File size: 20,721 Bytes
e0be88b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
# Copyright 2018 HuggingFace Inc..
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
ruff: isort: skip_file
"""

import os
import pickle
import tempfile
import unittest
from typing import Callable, Optional

import numpy as np

from transformers import (
    BatchEncoding,
    BertTokenizer,
    BertTokenizerFast,
    LlamaTokenizerFast,
    PreTrainedTokenizer,
    PreTrainedTokenizerFast,
    TensorType,
    TokenSpan,
    is_tokenizers_available,
)
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
from transformers.testing_utils import (
    CaptureStderr,
    require_flax,
    require_sentencepiece,
    require_tf,
    require_tokenizers,
    require_torch,
    slow,
)


if is_tokenizers_available():
    import tokenizers
    from tokenizers import Tokenizer
    from tokenizers.models import WordPiece


class TokenizerUtilsTest(unittest.TestCase):
    def check_tokenizer_from_pretrained(self, tokenizer_class):
        s3_models = list(tokenizer_class.max_model_input_sizes.keys())
        for model_name in s3_models[:1]:
            tokenizer = tokenizer_class.from_pretrained(model_name)
            self.assertIsNotNone(tokenizer)
            self.assertIsInstance(tokenizer, tokenizer_class)
            self.assertIsInstance(tokenizer, PreTrainedTokenizer)

            for special_tok in tokenizer.all_special_tokens:
                self.assertIsInstance(special_tok, str)
                special_tok_id = tokenizer.convert_tokens_to_ids(special_tok)
                self.assertIsInstance(special_tok_id, int)

    def assert_dump_and_restore(self, be_original: BatchEncoding, equal_op: Optional[Callable] = None):
        batch_encoding_str = pickle.dumps(be_original)
        self.assertIsNotNone(batch_encoding_str)

        be_restored = pickle.loads(batch_encoding_str)

        # Ensure is_fast is correctly restored
        self.assertEqual(be_restored.is_fast, be_original.is_fast)

        # Ensure encodings are potentially correctly restored
        if be_original.is_fast:
            self.assertIsNotNone(be_restored.encodings)
        else:
            self.assertIsNone(be_restored.encodings)

        # Ensure the keys are the same
        for original_v, restored_v in zip(be_original.values(), be_restored.values()):
            if equal_op:
                self.assertTrue(equal_op(restored_v, original_v))
            else:
                self.assertEqual(restored_v, original_v)

    @slow
    def test_pretrained_tokenizers(self):
        self.check_tokenizer_from_pretrained(GPT2Tokenizer)

    def test_tensor_type_from_str(self):
        self.assertEqual(TensorType("tf"), TensorType.TENSORFLOW)
        self.assertEqual(TensorType("pt"), TensorType.PYTORCH)
        self.assertEqual(TensorType("np"), TensorType.NUMPY)

    @require_tokenizers
    def test_batch_encoding_pickle(self):
        import numpy as np

        tokenizer_p = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
        tokenizer_r = BertTokenizerFast.from_pretrained("google-bert/bert-base-cased")

        # Python no tensor
        with self.subTest("BatchEncoding (Python, return_tensors=None)"):
            self.assert_dump_and_restore(tokenizer_p("Small example to encode"))

        with self.subTest("BatchEncoding (Python, return_tensors=NUMPY)"):
            self.assert_dump_and_restore(
                tokenizer_p("Small example to encode", return_tensors=TensorType.NUMPY), np.array_equal
            )

        with self.subTest("BatchEncoding (Rust, return_tensors=None)"):
            self.assert_dump_and_restore(tokenizer_r("Small example to encode"))

        with self.subTest("BatchEncoding (Rust, return_tensors=NUMPY)"):
            self.assert_dump_and_restore(
                tokenizer_r("Small example to encode", return_tensors=TensorType.NUMPY), np.array_equal
            )

    @require_tf
    @require_tokenizers
    def test_batch_encoding_pickle_tf(self):
        import tensorflow as tf

        def tf_array_equals(t1, t2):
            return tf.reduce_all(tf.equal(t1, t2))

        tokenizer_p = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
        tokenizer_r = BertTokenizerFast.from_pretrained("google-bert/bert-base-cased")

        with self.subTest("BatchEncoding (Python, return_tensors=TENSORFLOW)"):
            self.assert_dump_and_restore(
                tokenizer_p("Small example to encode", return_tensors=TensorType.TENSORFLOW), tf_array_equals
            )

        with self.subTest("BatchEncoding (Rust, return_tensors=TENSORFLOW)"):
            self.assert_dump_and_restore(
                tokenizer_r("Small example to encode", return_tensors=TensorType.TENSORFLOW), tf_array_equals
            )

    @require_torch
    @require_tokenizers
    def test_batch_encoding_pickle_pt(self):
        import torch

        tokenizer_p = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
        tokenizer_r = BertTokenizerFast.from_pretrained("google-bert/bert-base-cased")

        with self.subTest("BatchEncoding (Python, return_tensors=PYTORCH)"):
            self.assert_dump_and_restore(
                tokenizer_p("Small example to encode", return_tensors=TensorType.PYTORCH), torch.equal
            )

        with self.subTest("BatchEncoding (Rust, return_tensors=PYTORCH)"):
            self.assert_dump_and_restore(
                tokenizer_r("Small example to encode", return_tensors=TensorType.PYTORCH), torch.equal
            )

    @require_tokenizers
    def test_batch_encoding_is_fast(self):
        tokenizer_p = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
        tokenizer_r = BertTokenizerFast.from_pretrained("google-bert/bert-base-cased")

        with self.subTest("Python Tokenizer"):
            self.assertFalse(tokenizer_p("Small example to_encode").is_fast)

        with self.subTest("Rust Tokenizer"):
            self.assertTrue(tokenizer_r("Small example to_encode").is_fast)

    @require_tokenizers
    def test_batch_encoding_word_to_tokens(self):
        tokenizer_r = BertTokenizerFast.from_pretrained("google-bert/bert-base-cased")
        encoded = tokenizer_r(["Test", "\xad", "test"], is_split_into_words=True)

        self.assertEqual(encoded.word_to_tokens(0), TokenSpan(start=1, end=2))
        self.assertEqual(encoded.word_to_tokens(1), None)
        self.assertEqual(encoded.word_to_tokens(2), TokenSpan(start=2, end=3))

    def test_batch_encoding_with_labels(self):
        batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]})
        tensor_batch = batch.convert_to_tensors(tensor_type="np")
        self.assertEqual(tensor_batch["inputs"].shape, (2, 3))
        self.assertEqual(tensor_batch["labels"].shape, (2,))
        # test converting the converted
        with CaptureStderr() as cs:
            tensor_batch = batch.convert_to_tensors(tensor_type="np")
        self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}")

        batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0})
        tensor_batch = batch.convert_to_tensors(tensor_type="np", prepend_batch_axis=True)
        self.assertEqual(tensor_batch["inputs"].shape, (1, 3))
        self.assertEqual(tensor_batch["labels"].shape, (1,))

    @require_torch
    def test_batch_encoding_with_labels_pt(self):
        batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]})
        tensor_batch = batch.convert_to_tensors(tensor_type="pt")
        self.assertEqual(tensor_batch["inputs"].shape, (2, 3))
        self.assertEqual(tensor_batch["labels"].shape, (2,))
        # test converting the converted
        with CaptureStderr() as cs:
            tensor_batch = batch.convert_to_tensors(tensor_type="pt")
        self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}")

        batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0})
        tensor_batch = batch.convert_to_tensors(tensor_type="pt", prepend_batch_axis=True)
        self.assertEqual(tensor_batch["inputs"].shape, (1, 3))
        self.assertEqual(tensor_batch["labels"].shape, (1,))

    @require_tf
    def test_batch_encoding_with_labels_tf(self):
        batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]})
        tensor_batch = batch.convert_to_tensors(tensor_type="tf")
        self.assertEqual(tensor_batch["inputs"].shape, (2, 3))
        self.assertEqual(tensor_batch["labels"].shape, (2,))
        # test converting the converted
        with CaptureStderr() as cs:
            tensor_batch = batch.convert_to_tensors(tensor_type="tf")
        self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}")

        batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0})
        tensor_batch = batch.convert_to_tensors(tensor_type="tf", prepend_batch_axis=True)
        self.assertEqual(tensor_batch["inputs"].shape, (1, 3))
        self.assertEqual(tensor_batch["labels"].shape, (1,))

    @require_flax
    def test_batch_encoding_with_labels_jax(self):
        batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]})
        tensor_batch = batch.convert_to_tensors(tensor_type="jax")
        self.assertEqual(tensor_batch["inputs"].shape, (2, 3))
        self.assertEqual(tensor_batch["labels"].shape, (2,))
        # test converting the converted
        with CaptureStderr() as cs:
            tensor_batch = batch.convert_to_tensors(tensor_type="jax")
        self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}")

        batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0})
        tensor_batch = batch.convert_to_tensors(tensor_type="jax", prepend_batch_axis=True)
        self.assertEqual(tensor_batch["inputs"].shape, (1, 3))
        self.assertEqual(tensor_batch["labels"].shape, (1,))

    def test_padding_accepts_tensors(self):
        features = [{"input_ids": np.array([0, 1, 2])}, {"input_ids": np.array([0, 1, 2, 3])}]
        tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased")

        batch = tokenizer.pad(features, padding=True)
        self.assertTrue(isinstance(batch["input_ids"], np.ndarray))
        self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])
        batch = tokenizer.pad(features, padding=True, return_tensors="np")
        self.assertTrue(isinstance(batch["input_ids"], np.ndarray))
        self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])

    @require_tokenizers
    def test_decoding_single_token(self):
        for tokenizer_class in [BertTokenizer, BertTokenizerFast]:
            with self.subTest(f"{tokenizer_class}"):
                tokenizer = tokenizer_class.from_pretrained("google-bert/bert-base-cased")

                token_id = 2300
                decoded_flat = tokenizer.decode(token_id)
                decoded_list = tokenizer.decode([token_id])

                self.assertEqual(decoded_flat, "Force")
                self.assertEqual(decoded_list, "Force")

                token_id = 0
                decoded_flat = tokenizer.decode(token_id)
                decoded_list = tokenizer.decode([token_id])

                self.assertEqual(decoded_flat, "[PAD]")
                self.assertEqual(decoded_list, "[PAD]")

                last_item_id = tokenizer.vocab_size - 1
                decoded_flat = tokenizer.decode(last_item_id)
                decoded_list = tokenizer.decode([last_item_id])

                self.assertEqual(decoded_flat, "##:")
                self.assertEqual(decoded_list, "##:")

    def test_extra_special_tokens_multimodal(self):
        special_tokens_list = [
            "bos_token",
            "eos_token",
            "unk_token",
            "sep_token",
            "pad_token",
            "cls_token",
            "mask_token",
            "additional_special_tokens",
        ]
        llama_tokenizer = LlamaTokenizerFast.from_pretrained("huggyllama/llama-7b")
        llama_tokenizer.extra_special_tokens = {
            "boi_token": "<image_start>",
            "eoi_token": "<image_end>",
            "image_token": "<image>",
        }
        self.assertListEqual(llama_tokenizer.SPECIAL_TOKENS_ATTRIBUTES, special_tokens_list)
        with tempfile.TemporaryDirectory() as tmpdirname:
            llama_tokenizer.save_pretrained(tmpdirname)

            # load back and check we have extra special tokens set
            loaded_tokenizer = LlamaTokenizerFast.from_pretrained(tmpdirname)
            multimodal_special_tokens_list = special_tokens_list + ["boi_token", "eoi_token", "image_token"]
            self.assertListEqual(loaded_tokenizer.SPECIAL_TOKENS_ATTRIBUTES, multimodal_special_tokens_list)

            # We set an image_token_id before, so we can get an "image_token" as str that matches the id
            self.assertTrue(loaded_tokenizer.image_token == "<image>")
            self.assertTrue(loaded_tokenizer.image_token_id == loaded_tokenizer.convert_tokens_to_ids("<image>"))

        # save one more time and make sure the image token can get loaded back
        with tempfile.TemporaryDirectory() as tmpdirname:
            loaded_tokenizer.save_pretrained(tmpdirname)
            loaded_tokenizer_with_extra_tokens = LlamaTokenizerFast.from_pretrained(tmpdirname)
            self.assertTrue(loaded_tokenizer_with_extra_tokens.image_token == "<image>")

        # test that we can also indicate extra tokens during load time
        extra_special_tokens = {
            "boi_token": "<image_start>",
            "eoi_token": "<image_end>",
            "image_token": "<image>",
        }
        tokenizer = LlamaTokenizerFast.from_pretrained(
            "huggyllama/llama-7b", extra_special_tokens=extra_special_tokens
        )
        self.assertTrue(tokenizer.image_token == "<image>")
        self.assertTrue(tokenizer.image_token_id == loaded_tokenizer.convert_tokens_to_ids("<image>"))

    @require_tokenizers
    def test_decoding_skip_special_tokens(self):
        for tokenizer_class in [BertTokenizer, BertTokenizerFast]:
            with self.subTest(f"{tokenizer_class}"):
                tokenizer = tokenizer_class.from_pretrained("google-bert/bert-base-cased")
                tokenizer.add_tokens(["ஐ"], special_tokens=True)

                # test special token with other tokens, skip the special tokens
                sentence = "This is a beautiful flower ஐ"
                ids = tokenizer(sentence)["input_ids"]
                decoded_sent = tokenizer.decode(ids, skip_special_tokens=True)
                self.assertEqual(decoded_sent, "This is a beautiful flower")

                # test special token with other tokens, do not skip the special tokens
                ids = tokenizer(sentence)["input_ids"]
                decoded_sent = tokenizer.decode(ids, skip_special_tokens=False)
                self.assertEqual(decoded_sent, "[CLS] This is a beautiful flower ஐ [SEP]")

                # test special token stand alone, skip the special tokens
                sentence = "ஐ"
                ids = tokenizer(sentence)["input_ids"]
                decoded_sent = tokenizer.decode(ids, skip_special_tokens=True)
                self.assertEqual(decoded_sent, "")

                # test special token stand alone, do not skip the special tokens
                ids = tokenizer(sentence)["input_ids"]
                decoded_sent = tokenizer.decode(ids, skip_special_tokens=False)
                self.assertEqual(decoded_sent, "[CLS] ஐ [SEP]")

                # test single special token alone, skip
                pad_id = 0
                decoded_sent = tokenizer.decode(pad_id, skip_special_tokens=True)
                self.assertEqual(decoded_sent, "")

                # test single special token alone, do not skip
                decoded_sent = tokenizer.decode(pad_id, skip_special_tokens=False)
                self.assertEqual(decoded_sent, "[PAD]")

    @require_torch
    def test_padding_accepts_tensors_pt(self):
        import torch

        features = [{"input_ids": torch.tensor([0, 1, 2])}, {"input_ids": torch.tensor([0, 1, 2, 3])}]
        tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased")

        batch = tokenizer.pad(features, padding=True)
        self.assertTrue(isinstance(batch["input_ids"], torch.Tensor))
        self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])
        batch = tokenizer.pad(features, padding=True, return_tensors="pt")
        self.assertTrue(isinstance(batch["input_ids"], torch.Tensor))
        self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])

    @require_tf
    def test_padding_accepts_tensors_tf(self):
        import tensorflow as tf

        features = [{"input_ids": tf.constant([0, 1, 2])}, {"input_ids": tf.constant([0, 1, 2, 3])}]
        tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased")

        batch = tokenizer.pad(features, padding=True)
        self.assertTrue(isinstance(batch["input_ids"], tf.Tensor))
        self.assertEqual(batch["input_ids"].numpy().tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])
        batch = tokenizer.pad(features, padding=True, return_tensors="tf")
        self.assertTrue(isinstance(batch["input_ids"], tf.Tensor))
        self.assertEqual(batch["input_ids"].numpy().tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])

    @require_tokenizers
    def test_instantiation_from_tokenizers(self):
        bert_tokenizer = Tokenizer(WordPiece(unk_token="[UNK]"))
        PreTrainedTokenizerFast(tokenizer_object=bert_tokenizer)

    @require_tokenizers
    def test_instantiation_from_tokenizers_json_file(self):
        bert_tokenizer = Tokenizer(WordPiece(unk_token="[UNK]"))
        with tempfile.TemporaryDirectory() as tmpdirname:
            bert_tokenizer.save(os.path.join(tmpdirname, "tokenizer.json"))
            PreTrainedTokenizerFast(tokenizer_file=os.path.join(tmpdirname, "tokenizer.json"))

    def test_len_tokenizer(self):
        for tokenizer_class in [BertTokenizer, BertTokenizerFast]:
            with self.subTest(f"{tokenizer_class}"):
                tokenizer = tokenizer_class.from_pretrained("bert-base-uncased")
                added_tokens_size = len(tokenizer.added_tokens_decoder)
                self.assertEqual(len(tokenizer), tokenizer.vocab_size)

                tokenizer.add_tokens(["<test_token>"])
                self.assertEqual(len(tokenizer), tokenizer.vocab_size + 1)
                self.assertEqual(len(tokenizer.added_tokens_decoder), added_tokens_size + 1)
                self.assertEqual(len(tokenizer.added_tokens_encoder), added_tokens_size + 1)

    @require_sentencepiece
    def test_sentencepiece_cohabitation(self):
        from sentencepiece import sentencepiece_model_pb2 as _original_protobuf  # noqa: F401

        from transformers.convert_slow_tokenizer import import_protobuf  # noqa: F401

        # Now this will try to import sentencepiece_model_pb2_new.py. This should not fail even if the protobuf
        # was already imported.
        import_protobuf()

    def test_training_new_tokenizer_edge_cases(self):
        _tokenizer = Tokenizer(tokenizers.models.BPE(vocab={"a": 1, "b": 2, "ab": 3}, merges=[("a", "b")]))
        _tokenizer.pre_tokenizer = None

        tokenizer = PreTrainedTokenizerFast(tokenizer_object=_tokenizer)
        toy_text_iterator = ("a" for _ in range(1000))
        tokenizer.train_new_from_iterator(text_iterator=toy_text_iterator, length=1000, vocab_size=50)

        _tokenizer.normalizer = None
        tokenizer = PreTrainedTokenizerFast(tokenizer_object=_tokenizer)
        toy_text_iterator = ("a" for _ in range(1000))
        tokenizer.train_new_from_iterator(text_iterator=toy_text_iterator, length=1000, vocab_size=50)

        _tokenizer.post_processor = None
        tokenizer = PreTrainedTokenizerFast(tokenizer_object=_tokenizer)
        toy_text_iterator = ("a" for _ in range(1000))
        tokenizer.train_new_from_iterator(text_iterator=toy_text_iterator, length=1000, vocab_size=50)