File size: 18,444 Bytes
e0be88b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
# coding=utf-8
# Copyright 2025 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import json
import os
import tempfile
import warnings

import numpy as np
from packaging import version

from transformers import AutoVideoProcessor
from transformers.testing_utils import (
    check_json_file_has_correct_format,
    require_torch,
    require_torch_accelerator,
    require_vision,
    slow,
    torch_device,
)
from transformers.utils import is_torch_available, is_vision_available


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image


def prepare_video(num_frames, num_channels, width=10, height=10, return_tensors="pil"):
    """This function prepares a video as a list of PIL images/NumPy arrays/PyTorch tensors."""

    video = []
    for i in range(num_frames):
        video.append(np.random.randint(255, size=(width, height, num_channels), dtype=np.uint8))

    if return_tensors == "pil":
        # PIL expects the channel dimension as last dimension
        video = [Image.fromarray(frame) for frame in video]
    elif return_tensors == "torch":
        # Torch images are typically in channels first format
        video = torch.tensor(video).permute(0, 3, 1, 2)
    elif return_tensors == "np":
        # Numpy images are typically in channels last format
        video = np.array(video)

    return video


def prepare_video_inputs(
    batch_size,
    num_frames,
    num_channels,
    min_resolution,
    max_resolution,
    equal_resolution=False,
    return_tensors="pil",
):
    """This function prepares a batch of videos: a list of list of PIL images, or a list of list of numpy arrays if
    one specifies return_tensors="np", or a list of list of PyTorch tensors if one specifies return_tensors="torch".

    One can specify whether the videos are of the same resolution or not.
    """

    video_inputs = []
    for i in range(batch_size):
        if equal_resolution:
            width = height = max_resolution
        else:
            width, height = np.random.choice(np.arange(min_resolution, max_resolution), 2)
        video = prepare_video(
            num_frames=num_frames,
            num_channels=num_channels,
            width=width,
            height=height,
            return_tensors=return_tensors,
        )
        video_inputs.append(video)

    return video_inputs


class VideoProcessingTestMixin:
    test_cast_dtype = None
    fast_video_processing_class = None
    video_processor_list = None
    input_name = "pixel_values_videos"

    def setUp(self):
        video_processor_list = []

        if self.fast_video_processing_class:
            video_processor_list.append(self.fast_video_processing_class)

        self.video_processor_list = video_processor_list

    def test_video_processor_to_json_string(self):
        for video_processing_class in self.video_processor_list:
            video_processor = video_processing_class(**self.video_processor_dict)
            obj = json.loads(video_processor.to_json_string())
            for key, value in self.video_processor_dict.items():
                self.assertEqual(obj[key], value)

    def test_video_processor_to_json_file(self):
        for video_processing_class in self.video_processor_list:
            video_processor_first = video_processing_class(**self.video_processor_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                json_file_path = os.path.join(tmpdirname, "video_processor.json")
                video_processor_first.to_json_file(json_file_path)
                video_processor_second = video_processing_class.from_json_file(json_file_path)

            self.assertEqual(video_processor_second.to_dict(), video_processor_first.to_dict())

    def test_video_processor_from_dict_with_kwargs(self):
        video_processor = self.fast_video_processing_class.from_dict(self.video_processor_dict)
        self.assertEqual(video_processor.size, {"shortest_edge": 20})
        self.assertEqual(video_processor.crop_size, {"height": 18, "width": 18})

        video_processor = self.fast_video_processing_class.from_dict(self.video_processor_dict, size=42, crop_size=84)
        self.assertEqual(video_processor.size, {"shortest_edge": 42})
        self.assertEqual(video_processor.crop_size, {"height": 84, "width": 84})

    def test_video_processor_from_and_save_pretrained(self):
        for video_processing_class in self.video_processor_list:
            video_processor_first = video_processing_class(**self.video_processor_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                saved_file = video_processor_first.save_pretrained(tmpdirname)[0]
                check_json_file_has_correct_format(saved_file)
                video_processor_second = video_processing_class.from_pretrained(tmpdirname)

            self.assertEqual(video_processor_second.to_dict(), video_processor_first.to_dict())

    def test_video_processor_save_load_with_autovideoprocessor(self):
        for video_processing_class in self.video_processor_list:
            video_processor_first = video_processing_class(**self.video_processor_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                saved_file = video_processor_first.save_pretrained(tmpdirname)[0]
                check_json_file_has_correct_format(saved_file)

                use_fast = video_processing_class.__name__.endswith("Fast")
                video_processor_second = AutoVideoProcessor.from_pretrained(tmpdirname, use_fast=use_fast)

            self.assertEqual(video_processor_second.to_dict(), video_processor_first.to_dict())

    def test_init_without_params(self):
        for video_processing_class in self.video_processor_list:
            video_processor = video_processing_class()
            self.assertIsNotNone(video_processor)

    @slow
    @require_torch_accelerator
    @require_vision
    def test_can_compile_fast_video_processor(self):
        if self.fast_video_processing_class is None:
            self.skipTest("Skipping compilation test as fast video processor is not defined")
        if version.parse(torch.__version__) < version.parse("2.3"):
            self.skipTest(reason="This test requires torch >= 2.3 to run.")

        torch.compiler.reset()
        video_inputs = self.video_processor_tester.prepare_video_inputs(equal_resolution=False, return_tensors="torch")
        video_processor = self.fast_video_processing_class(**self.video_processor_dict)
        output_eager = video_processor(video_inputs, device=torch_device, return_tensors="pt")

        video_processor = torch.compile(video_processor, mode="reduce-overhead")
        output_compiled = video_processor(video_inputs, device=torch_device, return_tensors="pt")

        torch.testing.assert_close(
            output_eager[self.input_name], output_compiled[self.input_name], rtol=1e-4, atol=1e-4
        )

    @require_torch
    @require_vision
    def test_cast_dtype_device(self):
        for video_processing_class in self.video_processor_list:
            if self.test_cast_dtype is not None:
                # Initialize video_processor
                video_processor = video_processing_class(**self.video_processor_dict)

                # create random PyTorch tensors
                video_inputs = self.video_processor_tester.prepare_video_inputs(
                    equal_resolution=False, return_tensors="torch"
                )

                encoding = video_processor(video_inputs, return_tensors="pt")

                self.assertEqual(encoding[self.input_name].device, torch.device("cpu"))
                self.assertEqual(encoding[self.input_name].dtype, torch.float32)

                encoding = video_processor(video_inputs, return_tensors="pt").to(torch.float16)
                self.assertEqual(encoding[self.input_name].device, torch.device("cpu"))
                self.assertEqual(encoding[self.input_name].dtype, torch.float16)

                encoding = video_processor(video_inputs, return_tensors="pt").to("cpu", torch.bfloat16)
                self.assertEqual(encoding[self.input_name].device, torch.device("cpu"))
                self.assertEqual(encoding[self.input_name].dtype, torch.bfloat16)

                with self.assertRaises(TypeError):
                    _ = video_processor(video_inputs, return_tensors="pt").to(torch.bfloat16, "cpu")

                # Try with text + video feature
                encoding = video_processor(video_inputs, return_tensors="pt")
                encoding.update({"input_ids": torch.LongTensor([[1, 2, 3], [4, 5, 6]])})
                encoding = encoding.to(torch.float16)

                self.assertEqual(encoding[self.input_name].device, torch.device("cpu"))
                self.assertEqual(encoding[self.input_name].dtype, torch.float16)
                self.assertEqual(encoding.input_ids.dtype, torch.long)

    def test_call_pil(self):
        for video_processing_class in self.video_processor_list:
            # Initialize video_processing
            video_processing = video_processing_class(**self.video_processor_dict)
            video_inputs = self.video_processor_tester.prepare_video_inputs(equal_resolution=False)

            # Each video is a list of PIL Images
            for video in video_inputs:
                self.assertIsInstance(video[0], Image.Image)

            # Test not batched input
            encoded_videos = video_processing(video_inputs[0], return_tensors="pt")[self.input_name]
            expected_output_video_shape = self.video_processor_tester.expected_output_video_shape([video_inputs[0]])
            self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))

            # Test batched
            encoded_videos = video_processing(video_inputs, return_tensors="pt")[self.input_name]
            expected_output_video_shape = self.video_processor_tester.expected_output_video_shape(video_inputs)
            self.assertEqual(
                tuple(encoded_videos.shape), (self.video_processor_tester.batch_size, *expected_output_video_shape)
            )

    def test_call_numpy(self):
        for video_processing_class in self.video_processor_list:
            # Initialize video_processing
            video_processing = video_processing_class(**self.video_processor_dict)
            # create random numpy tensors
            video_inputs = self.video_processor_tester.prepare_video_inputs(
                equal_resolution=False, return_tensors="np"
            )
            for video in video_inputs:
                self.assertIsInstance(video, np.ndarray)

            # Test not batched input
            encoded_videos = video_processing(video_inputs[0], return_tensors="pt")[self.input_name]
            expected_output_video_shape = self.video_processor_tester.expected_output_video_shape([video_inputs[0]])
            self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))

            # Test batched
            encoded_videos = video_processing(video_inputs, return_tensors="pt")[self.input_name]
            expected_output_video_shape = self.video_processor_tester.expected_output_video_shape(video_inputs)
            self.assertEqual(
                tuple(encoded_videos.shape), (self.video_processor_tester.batch_size, *expected_output_video_shape)
            )

    def test_call_pytorch(self):
        for video_processing_class in self.video_processor_list:
            # Initialize video_processing
            video_processing = video_processing_class(**self.video_processor_dict)
            # create random PyTorch tensors
            video_inputs = self.video_processor_tester.prepare_video_inputs(
                equal_resolution=False, return_tensors="torch"
            )

            for video in video_inputs:
                self.assertIsInstance(video, torch.Tensor)

            # Test not batched input
            encoded_videos = video_processing(video_inputs[0], return_tensors="pt")[self.input_name]
            expected_output_video_shape = self.video_processor_tester.expected_output_video_shape([video_inputs[0]])
            self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))

            # Test batched
            expected_output_video_shape = self.video_processor_tester.expected_output_video_shape(video_inputs)
            encoded_videos = video_processing(video_inputs, return_tensors="pt")[self.input_name]
            self.assertEqual(
                tuple(encoded_videos.shape),
                (self.video_processor_tester.batch_size, *expected_output_video_shape),
            )

    def test_nested_input(self):
        """Tests that the processor can work with nested list where each video is a list of arrays"""
        for video_processing_class in self.video_processor_list:
            video_processing = video_processing_class(**self.video_processor_dict)
            video_inputs = self.video_processor_tester.prepare_video_inputs(
                equal_resolution=False, return_tensors="np"
            )

            # Test not batched input
            video_inputs = [list(video) for video in video_inputs]
            encoded_videos = video_processing(video_inputs[0], return_tensors="pt")[self.input_name]
            expected_output_video_shape = self.video_processor_tester.expected_output_video_shape([video_inputs[0]])
            self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))

            # Test batched
            expected_output_video_shape = self.video_processor_tester.expected_output_video_shape(video_inputs)
            encoded_videos = video_processing(video_inputs, return_tensors="pt")[self.input_name]
            self.assertEqual(
                tuple(encoded_videos.shape),
                (self.video_processor_tester.batch_size, *expected_output_video_shape),
            )

    def test_call_numpy_4_channels(self):
        for video_processing_class in self.video_processor_list:
            # Test that can process videos which have an arbitrary number of channels
            # Initialize video_processing
            video_processor = video_processing_class(**self.video_processor_dict)

            # create random numpy tensors
            self.video_processor_tester.num_channels = 4
            video_inputs = self.video_processor_tester.prepare_video_inputs(
                equal_resolution=False, return_tensors="pil"
            )

            # Test not batched input
            encoded_videos = video_processor(
                video_inputs[0],
                return_tensors="pt",
                input_data_format="channels_last",
                image_mean=0,
                image_std=1,
            )[self.input_name]
            expected_output_video_shape = self.video_processor_tester.expected_output_video_shape([video_inputs[0]])
            if video_processor.do_convert_rgb:
                expected_output_video_shape = list(expected_output_video_shape)
                expected_output_video_shape[1] = 3
            self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))

            # Test batched
            encoded_videos = video_processor(
                video_inputs,
                return_tensors="pt",
                input_data_format="channels_last",
                image_mean=0,
                image_std=1,
            )[self.input_name]
            expected_output_video_shape = self.video_processor_tester.expected_output_video_shape(video_inputs)
            if video_processor.do_convert_rgb:
                expected_output_video_shape = list(expected_output_video_shape)
                expected_output_video_shape[1] = 3
            self.assertEqual(
                tuple(encoded_videos.shape), (self.video_processor_tester.batch_size, *expected_output_video_shape)
            )

    def test_video_processor_preprocess_arguments(self):
        is_tested = False

        for video_processing_class in self.video_processor_list:
            video_processor = video_processing_class(**self.video_processor_dict)

            # validation done by _valid_processor_keys attribute
            if hasattr(video_processor, "_valid_processor_keys") and hasattr(video_processor, "preprocess"):
                preprocess_parameter_names = inspect.getfullargspec(video_processor.preprocess).args
                preprocess_parameter_names.remove("self")
                preprocess_parameter_names.sort()
                valid_processor_keys = video_processor._valid_processor_keys
                valid_processor_keys.sort()
                self.assertEqual(preprocess_parameter_names, valid_processor_keys)
                is_tested = True

            # validation done by @filter_out_non_signature_kwargs decorator
            if hasattr(video_processor.preprocess, "_filter_out_non_signature_kwargs"):
                if hasattr(self.video_processor_tester, "prepare_video_inputs"):
                    inputs = self.video_processor_tester.prepare_video_inputs()
                elif hasattr(self.video_processor_tester, "prepare_video_inputs"):
                    inputs = self.video_processor_tester.prepare_video_inputs()
                else:
                    self.skipTest(reason="No valid input preparation method found")

                with warnings.catch_warnings(record=True) as raised_warnings:
                    warnings.simplefilter("always")
                    video_processor(inputs, extra_argument=True)

                messages = " ".join([str(w.message) for w in raised_warnings])
                self.assertGreaterEqual(len(raised_warnings), 1)
                self.assertIn("extra_argument", messages)
                is_tested = True

        if not is_tested:
            self.skipTest(reason="No validation found for `preprocess` method")