File size: 18,444 Bytes
e0be88b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
# coding=utf-8
# Copyright 2025 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import json
import os
import tempfile
import warnings
import numpy as np
from packaging import version
from transformers import AutoVideoProcessor
from transformers.testing_utils import (
check_json_file_has_correct_format,
require_torch,
require_torch_accelerator,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
def prepare_video(num_frames, num_channels, width=10, height=10, return_tensors="pil"):
"""This function prepares a video as a list of PIL images/NumPy arrays/PyTorch tensors."""
video = []
for i in range(num_frames):
video.append(np.random.randint(255, size=(width, height, num_channels), dtype=np.uint8))
if return_tensors == "pil":
# PIL expects the channel dimension as last dimension
video = [Image.fromarray(frame) for frame in video]
elif return_tensors == "torch":
# Torch images are typically in channels first format
video = torch.tensor(video).permute(0, 3, 1, 2)
elif return_tensors == "np":
# Numpy images are typically in channels last format
video = np.array(video)
return video
def prepare_video_inputs(
batch_size,
num_frames,
num_channels,
min_resolution,
max_resolution,
equal_resolution=False,
return_tensors="pil",
):
"""This function prepares a batch of videos: a list of list of PIL images, or a list of list of numpy arrays if
one specifies return_tensors="np", or a list of list of PyTorch tensors if one specifies return_tensors="torch".
One can specify whether the videos are of the same resolution or not.
"""
video_inputs = []
for i in range(batch_size):
if equal_resolution:
width = height = max_resolution
else:
width, height = np.random.choice(np.arange(min_resolution, max_resolution), 2)
video = prepare_video(
num_frames=num_frames,
num_channels=num_channels,
width=width,
height=height,
return_tensors=return_tensors,
)
video_inputs.append(video)
return video_inputs
class VideoProcessingTestMixin:
test_cast_dtype = None
fast_video_processing_class = None
video_processor_list = None
input_name = "pixel_values_videos"
def setUp(self):
video_processor_list = []
if self.fast_video_processing_class:
video_processor_list.append(self.fast_video_processing_class)
self.video_processor_list = video_processor_list
def test_video_processor_to_json_string(self):
for video_processing_class in self.video_processor_list:
video_processor = video_processing_class(**self.video_processor_dict)
obj = json.loads(video_processor.to_json_string())
for key, value in self.video_processor_dict.items():
self.assertEqual(obj[key], value)
def test_video_processor_to_json_file(self):
for video_processing_class in self.video_processor_list:
video_processor_first = video_processing_class(**self.video_processor_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
json_file_path = os.path.join(tmpdirname, "video_processor.json")
video_processor_first.to_json_file(json_file_path)
video_processor_second = video_processing_class.from_json_file(json_file_path)
self.assertEqual(video_processor_second.to_dict(), video_processor_first.to_dict())
def test_video_processor_from_dict_with_kwargs(self):
video_processor = self.fast_video_processing_class.from_dict(self.video_processor_dict)
self.assertEqual(video_processor.size, {"shortest_edge": 20})
self.assertEqual(video_processor.crop_size, {"height": 18, "width": 18})
video_processor = self.fast_video_processing_class.from_dict(self.video_processor_dict, size=42, crop_size=84)
self.assertEqual(video_processor.size, {"shortest_edge": 42})
self.assertEqual(video_processor.crop_size, {"height": 84, "width": 84})
def test_video_processor_from_and_save_pretrained(self):
for video_processing_class in self.video_processor_list:
video_processor_first = video_processing_class(**self.video_processor_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
saved_file = video_processor_first.save_pretrained(tmpdirname)[0]
check_json_file_has_correct_format(saved_file)
video_processor_second = video_processing_class.from_pretrained(tmpdirname)
self.assertEqual(video_processor_second.to_dict(), video_processor_first.to_dict())
def test_video_processor_save_load_with_autovideoprocessor(self):
for video_processing_class in self.video_processor_list:
video_processor_first = video_processing_class(**self.video_processor_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
saved_file = video_processor_first.save_pretrained(tmpdirname)[0]
check_json_file_has_correct_format(saved_file)
use_fast = video_processing_class.__name__.endswith("Fast")
video_processor_second = AutoVideoProcessor.from_pretrained(tmpdirname, use_fast=use_fast)
self.assertEqual(video_processor_second.to_dict(), video_processor_first.to_dict())
def test_init_without_params(self):
for video_processing_class in self.video_processor_list:
video_processor = video_processing_class()
self.assertIsNotNone(video_processor)
@slow
@require_torch_accelerator
@require_vision
def test_can_compile_fast_video_processor(self):
if self.fast_video_processing_class is None:
self.skipTest("Skipping compilation test as fast video processor is not defined")
if version.parse(torch.__version__) < version.parse("2.3"):
self.skipTest(reason="This test requires torch >= 2.3 to run.")
torch.compiler.reset()
video_inputs = self.video_processor_tester.prepare_video_inputs(equal_resolution=False, return_tensors="torch")
video_processor = self.fast_video_processing_class(**self.video_processor_dict)
output_eager = video_processor(video_inputs, device=torch_device, return_tensors="pt")
video_processor = torch.compile(video_processor, mode="reduce-overhead")
output_compiled = video_processor(video_inputs, device=torch_device, return_tensors="pt")
torch.testing.assert_close(
output_eager[self.input_name], output_compiled[self.input_name], rtol=1e-4, atol=1e-4
)
@require_torch
@require_vision
def test_cast_dtype_device(self):
for video_processing_class in self.video_processor_list:
if self.test_cast_dtype is not None:
# Initialize video_processor
video_processor = video_processing_class(**self.video_processor_dict)
# create random PyTorch tensors
video_inputs = self.video_processor_tester.prepare_video_inputs(
equal_resolution=False, return_tensors="torch"
)
encoding = video_processor(video_inputs, return_tensors="pt")
self.assertEqual(encoding[self.input_name].device, torch.device("cpu"))
self.assertEqual(encoding[self.input_name].dtype, torch.float32)
encoding = video_processor(video_inputs, return_tensors="pt").to(torch.float16)
self.assertEqual(encoding[self.input_name].device, torch.device("cpu"))
self.assertEqual(encoding[self.input_name].dtype, torch.float16)
encoding = video_processor(video_inputs, return_tensors="pt").to("cpu", torch.bfloat16)
self.assertEqual(encoding[self.input_name].device, torch.device("cpu"))
self.assertEqual(encoding[self.input_name].dtype, torch.bfloat16)
with self.assertRaises(TypeError):
_ = video_processor(video_inputs, return_tensors="pt").to(torch.bfloat16, "cpu")
# Try with text + video feature
encoding = video_processor(video_inputs, return_tensors="pt")
encoding.update({"input_ids": torch.LongTensor([[1, 2, 3], [4, 5, 6]])})
encoding = encoding.to(torch.float16)
self.assertEqual(encoding[self.input_name].device, torch.device("cpu"))
self.assertEqual(encoding[self.input_name].dtype, torch.float16)
self.assertEqual(encoding.input_ids.dtype, torch.long)
def test_call_pil(self):
for video_processing_class in self.video_processor_list:
# Initialize video_processing
video_processing = video_processing_class(**self.video_processor_dict)
video_inputs = self.video_processor_tester.prepare_video_inputs(equal_resolution=False)
# Each video is a list of PIL Images
for video in video_inputs:
self.assertIsInstance(video[0], Image.Image)
# Test not batched input
encoded_videos = video_processing(video_inputs[0], return_tensors="pt")[self.input_name]
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape([video_inputs[0]])
self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))
# Test batched
encoded_videos = video_processing(video_inputs, return_tensors="pt")[self.input_name]
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape(video_inputs)
self.assertEqual(
tuple(encoded_videos.shape), (self.video_processor_tester.batch_size, *expected_output_video_shape)
)
def test_call_numpy(self):
for video_processing_class in self.video_processor_list:
# Initialize video_processing
video_processing = video_processing_class(**self.video_processor_dict)
# create random numpy tensors
video_inputs = self.video_processor_tester.prepare_video_inputs(
equal_resolution=False, return_tensors="np"
)
for video in video_inputs:
self.assertIsInstance(video, np.ndarray)
# Test not batched input
encoded_videos = video_processing(video_inputs[0], return_tensors="pt")[self.input_name]
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape([video_inputs[0]])
self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))
# Test batched
encoded_videos = video_processing(video_inputs, return_tensors="pt")[self.input_name]
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape(video_inputs)
self.assertEqual(
tuple(encoded_videos.shape), (self.video_processor_tester.batch_size, *expected_output_video_shape)
)
def test_call_pytorch(self):
for video_processing_class in self.video_processor_list:
# Initialize video_processing
video_processing = video_processing_class(**self.video_processor_dict)
# create random PyTorch tensors
video_inputs = self.video_processor_tester.prepare_video_inputs(
equal_resolution=False, return_tensors="torch"
)
for video in video_inputs:
self.assertIsInstance(video, torch.Tensor)
# Test not batched input
encoded_videos = video_processing(video_inputs[0], return_tensors="pt")[self.input_name]
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape([video_inputs[0]])
self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))
# Test batched
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape(video_inputs)
encoded_videos = video_processing(video_inputs, return_tensors="pt")[self.input_name]
self.assertEqual(
tuple(encoded_videos.shape),
(self.video_processor_tester.batch_size, *expected_output_video_shape),
)
def test_nested_input(self):
"""Tests that the processor can work with nested list where each video is a list of arrays"""
for video_processing_class in self.video_processor_list:
video_processing = video_processing_class(**self.video_processor_dict)
video_inputs = self.video_processor_tester.prepare_video_inputs(
equal_resolution=False, return_tensors="np"
)
# Test not batched input
video_inputs = [list(video) for video in video_inputs]
encoded_videos = video_processing(video_inputs[0], return_tensors="pt")[self.input_name]
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape([video_inputs[0]])
self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))
# Test batched
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape(video_inputs)
encoded_videos = video_processing(video_inputs, return_tensors="pt")[self.input_name]
self.assertEqual(
tuple(encoded_videos.shape),
(self.video_processor_tester.batch_size, *expected_output_video_shape),
)
def test_call_numpy_4_channels(self):
for video_processing_class in self.video_processor_list:
# Test that can process videos which have an arbitrary number of channels
# Initialize video_processing
video_processor = video_processing_class(**self.video_processor_dict)
# create random numpy tensors
self.video_processor_tester.num_channels = 4
video_inputs = self.video_processor_tester.prepare_video_inputs(
equal_resolution=False, return_tensors="pil"
)
# Test not batched input
encoded_videos = video_processor(
video_inputs[0],
return_tensors="pt",
input_data_format="channels_last",
image_mean=0,
image_std=1,
)[self.input_name]
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape([video_inputs[0]])
if video_processor.do_convert_rgb:
expected_output_video_shape = list(expected_output_video_shape)
expected_output_video_shape[1] = 3
self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))
# Test batched
encoded_videos = video_processor(
video_inputs,
return_tensors="pt",
input_data_format="channels_last",
image_mean=0,
image_std=1,
)[self.input_name]
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape(video_inputs)
if video_processor.do_convert_rgb:
expected_output_video_shape = list(expected_output_video_shape)
expected_output_video_shape[1] = 3
self.assertEqual(
tuple(encoded_videos.shape), (self.video_processor_tester.batch_size, *expected_output_video_shape)
)
def test_video_processor_preprocess_arguments(self):
is_tested = False
for video_processing_class in self.video_processor_list:
video_processor = video_processing_class(**self.video_processor_dict)
# validation done by _valid_processor_keys attribute
if hasattr(video_processor, "_valid_processor_keys") and hasattr(video_processor, "preprocess"):
preprocess_parameter_names = inspect.getfullargspec(video_processor.preprocess).args
preprocess_parameter_names.remove("self")
preprocess_parameter_names.sort()
valid_processor_keys = video_processor._valid_processor_keys
valid_processor_keys.sort()
self.assertEqual(preprocess_parameter_names, valid_processor_keys)
is_tested = True
# validation done by @filter_out_non_signature_kwargs decorator
if hasattr(video_processor.preprocess, "_filter_out_non_signature_kwargs"):
if hasattr(self.video_processor_tester, "prepare_video_inputs"):
inputs = self.video_processor_tester.prepare_video_inputs()
elif hasattr(self.video_processor_tester, "prepare_video_inputs"):
inputs = self.video_processor_tester.prepare_video_inputs()
else:
self.skipTest(reason="No valid input preparation method found")
with warnings.catch_warnings(record=True) as raised_warnings:
warnings.simplefilter("always")
video_processor(inputs, extra_argument=True)
messages = " ".join([str(w.message) for w in raised_warnings])
self.assertGreaterEqual(len(raised_warnings), 1)
self.assertIn("extra_argument", messages)
is_tested = True
if not is_tested:
self.skipTest(reason="No validation found for `preprocess` method")
|