File size: 20,602 Bytes
e0be88b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
import pytest
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, GPTQConfig
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_gptq,
require_optimum,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.utils import is_auto_gptq_available, is_gptqmodel_available, is_ipex_available
if is_torch_available():
import torch
class GPTQConfigTest(unittest.TestCase):
def test_bits(self):
with self.assertRaises(ValueError):
GPTQConfig(bits="")
GPTQConfig(bits=1)
GPTQConfig(bits=2)
GPTQConfig(bits=4)
def test_dataset(self):
with self.assertRaises(ValueError):
GPTQConfig(bits=2, dataset="auto_gpt")
GPTQConfig(bits=2, dataset="c4")
def test_damp_percent(self):
with self.assertRaises(ValueError):
GPTQConfig(bits=2, damp_percent=10)
GPTQConfig(bits=2, damp_percent=-1)
GPTQConfig(bits=2, damp_percent="0")
GPTQConfig(bits=2, damp_percent=0.01)
def test_to_dict(self):
quantization_config = GPTQConfig(bits=2)
quantization_config.to_dict()
def test_from_dict(self):
dict = {"bits": 2}
quantization_config = GPTQConfig.from_dict(dict)
self.assertEqual(dict["bits"], quantization_config.bits)
@require_optimum
def test_optimum_config(self):
from optimum.gptq import GPTQQuantizer
config = GPTQConfig(bits=2)
optimum_config = GPTQQuantizer.from_dict(config.to_dict_optimum())
self.assertEqual(optimum_config.bits, config.bits)
new_config = GPTQConfig.from_dict_optimum(optimum_config.to_dict())
self.assertEqual(optimum_config.bits, new_config.bits)
@slow
@require_optimum
@require_gptq
class GPTQTest(unittest.TestCase):
model_name = "bigscience/bloom-560m"
input_text = "Hello my name is"
EXPECTED_OUTPUTS = set()
# flaky test: gptqmodel and auto-gptq are not output equivalent nor is string compare deterministic even between transformer/torch versions
EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I")
EXPECTED_OUTPUTS.add("Hello my name is John, I am a professional photographer and I")
EXPECTED_OUTPUTS.add("Hello my name is John, I am a student in the University of")
EXPECTED_OUTPUTS.add("Hello my name is John and I am a very good looking man.")
EXPECTED_OUTPUTS.add("Hello my name is Alyson, I am a student in the")
EXPECTED_OUTPUTS.add("Hello my name is Alyson and I am a very sweet,")
EXPECTED_OUTPUTS.add("Hello my name is Aiden, I am a student at the University")
EXPECTED_OUTPUTS.add("Hello my name is Nate and I am a member of the N")
EXPECTED_OUTPUTS.add("Hello my name is Nellie and I am a student at the")
EXPECTED_OUTPUTS.add("Hello my name is Nate and I am a new member of the")
# this seems a little small considering that we are doing 4bit quant but we have a small model and ww don't quantize the embeddings
EXPECTED_RELATIVE_DIFFERENCE = 1.664253062
bits = 4
sym = True
group_size = 128
desc_act = False
use_exllama = False
dataset = [
"auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."
]
device_map = "cpu" if is_gptqmodel_available() else None
# called only once for all test in this class
@classmethod
def setUpClass(cls):
"""
Setup quantized model
"""
cls.model_fp16 = AutoModelForCausalLM.from_pretrained(
cls.model_name, torch_dtype=torch.float16, device_map=cls.device_map
)
cls.mem_fp16 = cls.model_fp16.get_memory_footprint()
cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name, use_fast=True)
cls.config = AutoConfig.from_pretrained(cls.model_name)
cls.quantization_config = GPTQConfig(
bits=cls.bits,
dataset=cls.dataset,
tokenizer=cls.tokenizer,
group_size=cls.group_size,
desc_act=cls.desc_act,
sym=cls.sym,
use_exllama=cls.use_exllama,
)
cls.quantized_model = AutoModelForCausalLM.from_pretrained(
cls.model_name,
torch_dtype=torch.float16,
device_map=cls.device_map,
quantization_config=cls.quantization_config,
)
def test_memory_footprint(self):
r"""
A simple test to check if the model conversion has been done correctly by checking on the
memory footprint of the converted model
"""
mem_quantized = self.quantized_model.get_memory_footprint()
self.assertAlmostEqual(self.mem_fp16 / mem_quantized, self.EXPECTED_RELATIVE_DIFFERENCE, places=4)
def test_device_and_dtype_assignment(self):
r"""
Test whether trying to cast (or assigning a device to) a model after quantization will throw an error.
Checks also if other models are casted correctly.
"""
# This should work
if self.device_map in (None, "cpu"):
_ = self.quantized_model.to(0)
with self.assertRaises(ValueError):
# Tries with a `dtype``
self.quantized_model.to(torch.float16)
def test_original_dtype(self):
r"""
A simple test to check if the model successfully stores the original dtype
"""
self.assertTrue(hasattr(self.quantized_model.config, "_pre_quantization_dtype"))
self.assertFalse(hasattr(self.model_fp16.config, "_pre_quantization_dtype"))
self.assertTrue(self.quantized_model.config._pre_quantization_dtype == torch.float16)
def test_quantized_layers_class(self):
"""
Simple test to check if the model conversion has been done correctly by checking on
the class type of the linear layers of the converted models
"""
if is_gptqmodel_available():
from gptqmodel.utils.importer import hf_select_quant_linear
if hasattr(self.config, "quantization_config"):
checkpoint_format = self.config.quantization_config.get("checkpoint_format")
meta = self.config.quantization_config.get("meta")
else:
checkpoint_format = "gptq"
meta = None
QuantLinear = hf_select_quant_linear(
bits=self.bits,
group_size=self.group_size,
desc_act=self.desc_act,
sym=self.sym,
device_map=self.device_map,
checkpoint_format=checkpoint_format,
meta=meta,
backend=self.quantization_config.backend,
)
elif is_auto_gptq_available():
from auto_gptq.utils.import_utils import dynamically_import_QuantLinear as hf_select_quant_linear
QuantLinear = hf_select_quant_linear(
use_triton=False,
desc_act=self.desc_act,
group_size=self.group_size,
bits=self.bits,
disable_exllama=not self.use_exllama,
disable_exllamav2=True,
)
self.assertTrue(self.quantized_model.transformer.h[0].mlp.dense_4h_to_h.__class__ == QuantLinear)
def check_inference_correctness(self, model):
r"""
Test the generation quality of the quantized model and see that we are matching the expected output.
Given that we are operating on small numbers + the testing model is relatively small, we might not get
the same output across GPUs. So we'll generate few tokens (5-10) and check their output.
"""
# Check that inference pass works on the model
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
# Check the exactness of the results
output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(model.device), max_new_tokens=10)
# Get the generation
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
def check_quantized_layers_type(self, model, value):
self.assertTrue(model.transformer.h[0].mlp.dense_4h_to_h.QUANT_TYPE == value)
def test_generate_quality(self):
"""
Simple test to check the quality of the model by comparing the generated tokens with the expected tokens
"""
if self.device_map is None:
self.check_inference_correctness(self.quantized_model.to(0))
else:
if self.device_map == "cpu" and self.quantized_model.device.type != "cpu":
self.quantized_model.to("cpu")
self.check_inference_correctness(self.quantized_model)
def test_serialization(self):
"""
Test the serialization of the model and the loading of the quantized weights works
"""
with tempfile.TemporaryDirectory() as tmpdirname:
self.quantized_model.save_pretrained(tmpdirname)
if is_auto_gptq_available() and not is_gptqmodel_available():
quant_type = "cuda-old" if not self.use_exllama else "exllama"
if not self.use_exllama:
quantized_model_from_saved = AutoModelForCausalLM.from_pretrained(
tmpdirname, quantization_config=GPTQConfig(use_exllama=False, bits=4)
)
if self.device_map != "cpu":
quantized_model_from_saved = quantized_model_from_saved.to(0)
else:
quantized_model_from_saved = AutoModelForCausalLM.from_pretrained(
tmpdirname, device_map=self.device_map
)
else:
if self.device_map == "cpu":
quant_type = "ipex" if is_ipex_available() else "torch"
else:
# We expect tritonv2 to be used here, because exllama backend doesn't support packing https://github.com/ModelCloud/GPTQModel/issues/1354
# TODO: Remove this once GPTQModel exllama kernels supports packing
quant_type = "tritonv2"
quantized_model_from_saved = AutoModelForCausalLM.from_pretrained(
tmpdirname, device_map=self.device_map
)
self.check_quantized_layers_type(quantized_model_from_saved, quant_type)
self.check_inference_correctness(quantized_model_from_saved)
@require_accelerate
def test_serialization_big_model_inference(self):
"""
Test the serialization of the model and the loading of the quantized weights with big model inference
"""
with tempfile.TemporaryDirectory() as tmpdirname:
self.quantized_model.save_pretrained(tmpdirname)
device_map = self.device_map or "auto"
quantized_model_from_saved = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map=device_map)
self.check_inference_correctness(quantized_model_from_saved)
@require_torch_gpu
class GPTQTestCUDA(GPTQTest):
device_map = {"": 0}
def test_change_loading_attributes(self):
"""
Test the serialization of the model and the loading of the quantized weights works with another config file
"""
with tempfile.TemporaryDirectory() as tmpdirname:
self.quantized_model.save_pretrained(tmpdirname)
if is_auto_gptq_available() and not is_gptqmodel_available() and not self.use_exllama:
self.check_quantized_layers_type(self.quantized_model, "cuda-old")
# we need to put it directly to the gpu. Otherwise, we won't be able to initialize the exllama kernel
quantized_model_from_saved = AutoModelForCausalLM.from_pretrained(
tmpdirname, quantization_config=GPTQConfig(use_exllama=True, bits=4), device_map=self.device_map
)
self.assertEqual(quantized_model_from_saved.config.quantization_config.bits, self.bits)
self.check_quantized_layers_type(quantized_model_from_saved, "exllama")
self.check_inference_correctness(quantized_model_from_saved)
@require_accelerate
@require_torch_multi_gpu
class GPTQTestDeviceMap(GPTQTestCUDA):
device_map = "auto"
@require_accelerate
@require_torch_multi_gpu
class GPTQTestDeviceMapExllama(GPTQTestCUDA):
device_map = "auto"
use_exllama = True
@slow
@require_optimum
@require_gptq
@require_torch_gpu
@require_accelerate
class GPTQTestActOrderExllama(unittest.TestCase):
"""
Test GPTQ model with exllama kernel and desc_act=True (also known as act-order).
More information on those arguments here:
https://huggingface.co/docs/transformers/main_classes/quantization#transformers.GPTQConfig
"""
EXPECTED_OUTPUTS = set()
# flaky test: gptqmodel and auto-gptq are not output equivalent nor is string compare deterministic even between transformer/torch versions
EXPECTED_OUTPUTS.add("Hello, how are you ? I'm doing good, thanks for asking.")
# 4bit + act_order + 128g
model_name = "hf-internal-testing/TinyLlama-1.1B-Chat-v0.3-GPTQ"
input_text = "Hello, how are you ?"
@classmethod
def setUpClass(cls):
"""
Setup quantized model
"""
cls.quantization_config = GPTQConfig(bits=4, max_input_length=4028)
cls.quantized_model = AutoModelForCausalLM.from_pretrained(
cls.model_name,
torch_dtype=torch.float16,
device_map={"": 0},
quantization_config=cls.quantization_config,
)
cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name, use_fast=True)
def check_inference_correctness(self, model):
"""
Test the generation quality of the quantized model and see that we are matching the expected output.
Given that we are operating on small numbers + the testing model is relatively small, we might not get
the same output across GPUs. So we'll generate few tokens (5-10) and check their output.
"""
# Check that inference pass works on the model
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
# Check the exactness of the results
output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)
# Get the generation
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
def test_quantized_layers_type(self):
self.assertTrue(self.quantized_model.model.layers[0].self_attn.k_proj.QUANT_TYPE == "exllama")
def test_generate_quality(self):
"""
Simple test to check the quality of the model by comparing the generated tokens with the expected tokens
"""
self.check_inference_correctness(self.quantized_model)
def test_max_input_length(self):
"""
Test if the max_input_length works. It modifies the maximum input length that of the model that runs with exllama backend.
"""
prompt = "I am in Paris and" * 1000
inp = self.tokenizer(prompt, return_tensors="pt").to(0)
self.assertTrue(inp["input_ids"].shape[1] > 4028)
with self.assertRaises(RuntimeError) as cm:
self.quantized_model.generate(**inp, num_beams=1, min_new_tokens=3, max_new_tokens=3)
self.assertTrue("temp_state buffer is too small" in str(cm.exception))
prompt = "I am in Paris and"
inp = self.tokenizer(prompt, return_tensors="pt").to(0)
self.assertTrue(inp["input_ids"].shape[1] < 4028)
self.quantized_model.generate(**inp, num_beams=1, min_new_tokens=3, max_new_tokens=3)
@slow
@require_optimum
@require_gptq
@require_torch_gpu
@require_accelerate
class GPTQTestExllamaV2(unittest.TestCase):
"""
Test GPTQ model with exllamav2 kernel and desc_act=True (also known as act-order).
More information on those arguments here:
https://huggingface.co/docs/transformers/main_classes/quantization#transformers.GPTQConfig
"""
EXPECTED_OUTPUTS = set()
# flaky test: gptqmodel and auto-gptq are not output equivalent nor is string compare deterministic even between transformer/torch versions
EXPECTED_OUTPUTS.add("Hello, how are you ? I'm doing good, thanks for asking.")
# 4bit + act_order + 128g
model_name = "hf-internal-testing/TinyLlama-1.1B-Chat-v0.3-GPTQ"
input_text = "Hello, how are you ?"
@classmethod
def setUpClass(cls):
"""
Setup quantized model
"""
cls.quantization_config = GPTQConfig(bits=4, exllama_config={"version": 2})
cls.quantized_model = AutoModelForCausalLM.from_pretrained(
cls.model_name,
torch_dtype=torch.float16,
device_map={"": 0},
quantization_config=cls.quantization_config,
)
cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name, use_fast=True)
def test_quantized_layers_type(self):
if is_auto_gptq_available() and not is_gptqmodel_available():
self.assertEqual(
self.quantized_model.model.layers[0].self_attn.k_proj.QUANT_TYPE,
"exllamav2",
)
else:
# We expect tritonv2 to be used here, because exllama backend doesn't support packing https://github.com/ModelCloud/GPTQModel/issues/1354
# TODO: Remove this once GPTQModel exllama kernels supports packing
self.assertEqual(
self.quantized_model.model.layers[0].self_attn.k_proj.QUANT_TYPE,
"tritonv2",
)
def check_inference_correctness(self, model):
"""
Test the generation quality of the quantized model and see that we are matching the expected output.
Given that we are operating on small numbers + the testing model is relatively small, we might not get
the same output across GPUs. So we'll generate few tokens (5-10) and check their output.
"""
# Check that inference pass works on the model
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
# Check the exactness of the results
output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)
# Get the generation
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
def test_generate_quality(self):
"""
Simple test to check the quality of the model by comparing the generated tokens with the expected tokens
"""
self.check_inference_correctness(self.quantized_model)
# fail when run all together
@pytest.mark.skip
@require_accelerate
@require_torch_multi_gpu
class GPTQTestDeviceMapCPUOffload(GPTQTest):
device_map = {
"transformer.word_embeddings": 0,
"transformer.word_embeddings_layernorm": 0,
"lm_head": 0,
"transformer.h.0": 0,
"transformer.h.1": 0,
"transformer.h.2": 0,
"transformer.h.3": 0,
"transformer.h.4": 0,
"transformer.h.5": 0,
"transformer.h.6": 0,
"transformer.h.7": 0,
"transformer.h.8": 0,
"transformer.h.9": 0,
"transformer.h.10": 1,
"transformer.h.11": 1,
"transformer.h.12": 1,
"transformer.h.13": 1,
"transformer.h.14": 1,
"transformer.h.15": 1,
"transformer.h.16": 1,
"transformer.h.17": 0,
"transformer.h.18": "cpu",
"transformer.h.19": "cpu",
"transformer.h.20": "cpu",
"transformer.h.21": "cpu",
"transformer.h.22": "cpu",
"transformer.h.23": 1,
"transformer.ln_f": 0,
}
|