File size: 10,256 Bytes
e0be88b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

from transformers import (
    MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
    TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
    TextClassificationPipeline,
    pipeline,
)
from transformers.testing_utils import (
    is_pipeline_test,
    is_torch_available,
    nested_simplify,
    require_tf,
    require_torch,
    require_torch_bf16,
    require_torch_fp16,
    slow,
    torch_device,
)

from .test_pipelines_common import ANY


if is_torch_available():
    import torch


# These 2 model types require different inputs than those of the usual text models.
_TO_SKIP = {"LayoutLMv2Config", "LayoutLMv3Config"}


@is_pipeline_test
class TextClassificationPipelineTests(unittest.TestCase):
    model_mapping = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
    tf_model_mapping = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING

    if not hasattr(model_mapping, "is_dummy"):
        model_mapping = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
    if not hasattr(tf_model_mapping, "is_dummy"):
        tf_model_mapping = {
            config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
        }

    @require_torch
    def test_small_model_pt(self):
        text_classifier = pipeline(
            task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="pt"
        )

        outputs = text_classifier("This is great !")
        self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}])

        outputs = text_classifier("This is great !", top_k=2)
        self.assertEqual(
            nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}]
        )

        outputs = text_classifier(["This is great !", "This is bad"], top_k=2)
        self.assertEqual(
            nested_simplify(outputs),
            [
                [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}],
                [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}],
            ],
        )

        outputs = text_classifier("This is great !", top_k=1)
        self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}])

        # Legacy behavior
        outputs = text_classifier("This is great !", return_all_scores=False)
        self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}])

        outputs = text_classifier("This is great !", return_all_scores=True)
        self.assertEqual(
            nested_simplify(outputs), [[{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}]]
        )

        outputs = text_classifier(["This is great !", "Something else"], return_all_scores=True)
        self.assertEqual(
            nested_simplify(outputs),
            [
                [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}],
                [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}],
            ],
        )

        outputs = text_classifier(["This is great !", "Something else"], return_all_scores=False)
        self.assertEqual(
            nested_simplify(outputs),
            [
                {"label": "LABEL_0", "score": 0.504},
                {"label": "LABEL_0", "score": 0.504},
            ],
        )

        # Do not apply any function to output for regression tasks
        # hack: changing problem_type artificially (so keep this test at last)
        text_classifier.model.config.problem_type = "regression"
        outputs = text_classifier("This is great !")
        self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.01}])

    @require_torch
    def test_accepts_torch_device(self):
        text_classifier = pipeline(
            task="text-classification",
            model="hf-internal-testing/tiny-random-distilbert",
            framework="pt",
            device=torch_device,
        )

        outputs = text_classifier("This is great !")
        self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}])

    @require_torch_fp16
    def test_accepts_torch_fp16(self):
        text_classifier = pipeline(
            task="text-classification",
            model="hf-internal-testing/tiny-random-distilbert",
            framework="pt",
            device=torch_device,
            torch_dtype=torch.float16,
        )

        outputs = text_classifier("This is great !")
        self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}])

    @require_torch_bf16
    def test_accepts_torch_bf16(self):
        text_classifier = pipeline(
            task="text-classification",
            model="hf-internal-testing/tiny-random-distilbert",
            framework="pt",
            device=torch_device,
            torch_dtype=torch.bfloat16,
        )

        outputs = text_classifier("This is great !")
        self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}])

    @require_tf
    def test_small_model_tf(self):
        text_classifier = pipeline(
            task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="tf"
        )

        outputs = text_classifier("This is great !")
        self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}])

    @slow
    @require_torch
    def test_pt_bert(self):
        text_classifier = pipeline("text-classification")

        outputs = text_classifier("This is great !")
        self.assertEqual(nested_simplify(outputs), [{"label": "POSITIVE", "score": 1.0}])
        outputs = text_classifier("This is bad !")
        self.assertEqual(nested_simplify(outputs), [{"label": "NEGATIVE", "score": 1.0}])
        outputs = text_classifier("Birds are a type of animal")
        self.assertEqual(nested_simplify(outputs), [{"label": "POSITIVE", "score": 0.988}])

    @slow
    @require_tf
    def test_tf_bert(self):
        text_classifier = pipeline("text-classification", framework="tf")

        outputs = text_classifier("This is great !")
        self.assertEqual(nested_simplify(outputs), [{"label": "POSITIVE", "score": 1.0}])
        outputs = text_classifier("This is bad !")
        self.assertEqual(nested_simplify(outputs), [{"label": "NEGATIVE", "score": 1.0}])
        outputs = text_classifier("Birds are a type of animal")
        self.assertEqual(nested_simplify(outputs), [{"label": "POSITIVE", "score": 0.988}])

    def get_test_pipeline(
        self,
        model,
        tokenizer=None,
        image_processor=None,
        feature_extractor=None,
        processor=None,
        torch_dtype="float32",
    ):
        text_classifier = TextClassificationPipeline(
            model=model,
            tokenizer=tokenizer,
            feature_extractor=feature_extractor,
            image_processor=image_processor,
            processor=processor,
            torch_dtype=torch_dtype,
        )
        return text_classifier, ["HuggingFace is in", "This is another test"]

    def run_pipeline_test(self, text_classifier, _):
        model = text_classifier.model
        # Small inputs because BartTokenizer tiny has maximum position embeddings = 22
        valid_inputs = "HuggingFace is in"
        outputs = text_classifier(valid_inputs)

        self.assertEqual(nested_simplify(outputs), [{"label": ANY(str), "score": ANY(float)}])
        self.assertTrue(outputs[0]["label"] in model.config.id2label.values())

        valid_inputs = ["HuggingFace is in ", "Paris is in France"]
        outputs = text_classifier(valid_inputs)
        self.assertEqual(
            nested_simplify(outputs),
            [{"label": ANY(str), "score": ANY(float)}, {"label": ANY(str), "score": ANY(float)}],
        )
        self.assertTrue(outputs[0]["label"] in model.config.id2label.values())
        self.assertTrue(outputs[1]["label"] in model.config.id2label.values())

        # Forcing to get all results with `top_k=None`
        # This is NOT the legacy format
        outputs = text_classifier(valid_inputs, top_k=None)
        N = len(model.config.id2label.values())
        self.assertEqual(
            nested_simplify(outputs),
            [[{"label": ANY(str), "score": ANY(float)}] * N, [{"label": ANY(str), "score": ANY(float)}] * N],
        )

        valid_inputs = {"text": "HuggingFace is in ", "text_pair": "Paris is in France"}
        outputs = text_classifier(valid_inputs)
        self.assertEqual(
            nested_simplify(outputs),
            {"label": ANY(str), "score": ANY(float)},
        )
        self.assertTrue(outputs["label"] in model.config.id2label.values())

        # This might be used a text pair, but tokenizer + pipe interaction
        # makes it hard to understand that it's not using the pair properly
        # https://github.com/huggingface/transformers/issues/17305
        # We disabled this usage instead as it was outputting wrong outputs.
        invalid_input = [["HuggingFace is in ", "Paris is in France"]]
        with self.assertRaises(ValueError):
            text_classifier(invalid_input)

        # This used to be valid for doing text pairs
        # We're keeping it working because of backward compatibility
        outputs = text_classifier([[["HuggingFace is in ", "Paris is in France"]]])
        self.assertEqual(
            nested_simplify(outputs),
            [{"label": ANY(str), "score": ANY(float)}],
        )
        self.assertTrue(outputs[0]["label"] in model.config.id2label.values())