File size: 6,713 Bytes
72268ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import math
import os
import time
from logging import getLogger

import torch
import torch.nn as nn
import transformers

from .quantizer import Quantizer


logger = getLogger(__name__)

torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False


class GPTQ:
    def __init__(self, layer):
        self.layer = layer
        self.dev = self.layer.weight.device
        W = layer.weight.data.clone()
        if isinstance(self.layer, nn.Conv2d):
            W = W.flatten(1)
        if isinstance(self.layer, transformers.pytorch_utils.Conv1D):
            W = W.t()
        self.rows = W.shape[0]
        self.columns = W.shape[1]
        self.H = torch.zeros((self.columns, self.columns), device=self.dev)
        self.nsamples = 0
        self.quantizer = Quantizer()

    def add_batch(self, inp, out):
        if os.environ.get("DEBUG"):
            self.inp1 = inp
            self.out1 = out
        if len(inp.shape) == 2:
            inp = inp.unsqueeze(0)
        tmp = inp.shape[0]
        if isinstance(self.layer, nn.Linear) or isinstance(self.layer, transformers.Conv1D):
            if len(inp.shape) == 3:
                inp = inp.reshape((-1, inp.shape[-1]))
            inp = inp.t()
        if isinstance(self.layer, nn.Conv2d):
            unfold = nn.Unfold(
                self.layer.kernel_size,
                dilation=self.layer.dilation,
                padding=self.layer.padding,
                stride=self.layer.stride
            )
            inp = unfold(inp)
            inp = inp.permute([1, 0, 2])
            inp = inp.flatten(1)
        self.H *= self.nsamples / (self.nsamples + tmp)
        self.nsamples += tmp
        # inp = inp.float()
        inp = math.sqrt(2 / self.nsamples) * inp.float()
        # self.H += 2 / self.nsamples * inp.matmul(inp.t())
        self.H += inp.matmul(inp.t())

    def fasterquant(
        self, blocksize=128, percdamp=.01, group_size=-1, actorder=False, static_groups=False
    ):
        W = self.layer.weight.data.clone()
        if isinstance(self.layer, nn.Conv2d):
            W = W.flatten(1)
        if isinstance(self.layer, transformers.Conv1D):
            W = W.t()
        W = W.float()

        tick = time.time()

        if not self.quantizer.ready():
            self.quantizer.find_params(W, weight=True)

        H = self.H
        del self.H
        dead = torch.diag(H) == 0
        H[dead, dead] = 1
        W[:, dead] = 0

        g_idx = []
        scale = []
        zero = []
        now_idx = 1

        if static_groups:
            import copy
            groups = []
            for i in range(0, self.columns, group_size):
                quantizer = copy.deepcopy(self.quantizer)
                quantizer.find_params(W[:, i:(i + group_size)], weight=True)
                scale.append(quantizer.scale)
                zero.append(quantizer.zero)
                groups.append(quantizer)

        if actorder:
            perm = torch.argsort(torch.diag(H), descending=True)
            W = W[:, perm]
            H = H[perm][:, perm]
            invperm = torch.argsort(perm)

        Losses = torch.zeros_like(W)
        Q = torch.zeros_like(W)

        damp = percdamp * torch.mean(torch.diag(H))
        diag = torch.arange(self.columns, device=self.dev)
        H[diag, diag] += damp
        H = torch.linalg.cholesky(H)
        H = torch.cholesky_inverse(H)
        H = torch.linalg.cholesky(H, upper=True)
        Hinv = H

        for i1 in range(0, self.columns, blocksize):
            i2 = min(i1 + blocksize, self.columns)
            count = i2 - i1

            W1 = W[:, i1:i2].clone()
            Q1 = torch.zeros_like(W1)
            Err1 = torch.zeros_like(W1)
            Losses1 = torch.zeros_like(W1)
            Hinv1 = Hinv[i1:i2, i1:i2]

            for i in range(count):
                w = W1[:, i]
                d = Hinv1[i, i]

                if group_size != -1:
                    if not static_groups:
                        if (i1 + i) % group_size == 0:
                            self.quantizer.find_params(W[:, (i1 + i):(i1 + i + group_size)], weight=True)
                            
                        if ((i1 + i) // group_size) - now_idx == -1:
                            scale.append(self.quantizer.scale)
                            zero.append(self.quantizer.zero)
                            now_idx += 1
                    else:
                        idx = i1 + i
                        if actorder:
                            idx = perm[idx]
                        self.quantizer = groups[idx // group_size]
                        
                q = self.quantizer.quantize(w.unsqueeze(1)).flatten()
                Q1[:, i] = q
                Losses1[:, i] = (w - q) ** 2 / d ** 2

                err1 = (w - q) / d
                W1[:, i:] -= err1.unsqueeze(1).matmul(Hinv1[i, i:].unsqueeze(0))
                Err1[:, i] = err1

            Q[:, i1:i2] = Q1
            Losses[:, i1:i2] = Losses1 / 2

            W[:, i2:] -= Err1.matmul(Hinv[i1:i2, i2:])

            if os.environ.get("DEBUG"):
                self.layer.weight.data[:, :i2] = Q[:, :i2]
                self.layer.weight.data[:, i2:] = W[:, i2:]
                logger.debug(torch.sum((self.layer(self.inp1) - self.out1) ** 2))
                logger.debug(torch.sum(Losses))

        torch.cuda.synchronize()
        logger.info(f'duration: {(time.time() - tick)}')
        logger.info(f'avg loss: {torch.sum(Losses).item() / self.nsamples}')

        group_size = group_size if group_size != -1 else self.columns
        if static_groups and actorder:
            g_idx = [perm[i] // group_size for i in range(self.columns)]
        else:
            g_idx = [i // group_size for i in range(self.columns)]
        g_idx = torch.tensor(g_idx, dtype=torch.int32, device=Q.device)
        if actorder:
            Q = Q[:, invperm]
            g_idx = g_idx[invperm]

        if isinstance(self.layer, transformers.Conv1D):
            Q = Q.t()
        self.layer.weight.data = Q.reshape(self.layer.weight.shape).type_as(self.layer.weight.data)
        if os.environ.get("DEBUG"):
            logger.debug(torch.sum((self.layer(self.inp1) - self.out1) ** 2))

        if scale == []:
            scale.append(self.quantizer.scale)
            zero.append(self.quantizer.zero)
        scale = torch.cat(scale, dim=1)
        zero = torch.cat(zero, dim=1)
        return scale, zero, g_idx

    def free(self):
        if os.environ.get("DEBUG"):
            self.inp1 = None
            self.out1 = None
        self.H = None
        self.Losses = None
        self.Trace = None
        torch.cuda.empty_cache()


__all__ = ["GPTQ"]