Spaces:
Running
Running
File size: 13,537 Bytes
960b1a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
# coding: utf-8
# train_utils.py
import os
import torch
import logging
import random
import datetime
import numpy as np
from tqdm import tqdm
import csv
from torch.utils.data import DataLoader, ConcatDataset
from utils.losses import WeightedCrossEntropyLoss
from utils.measures import uar, war, mf1, wf1
from models.models import BiFormer, BiGraphFormer, BiGatedGraphFormer
from data_loading.dataset_multimodal import DatasetMultiModal
from data_loading.feature_extractor import AudioEmbeddingExtractor, TextEmbeddingExtractor
from sklearn.utils.class_weight import compute_class_weight
def custom_collate_fn(batch):
"""Собирает список образцов в единый батч, отбрасывая None (невалидные)."""
batch = [x for x in batch if x is not None]
if not batch:
return None
audios = [b["audio"] for b in batch]
audio_tensor = torch.stack(audios)
labels = [b["label"] for b in batch]
label_tensor = torch.stack(labels)
texts = [b["text"] for b in batch]
return {
"audio": audio_tensor,
"label": label_tensor,
"text": texts
}
def get_class_weights_from_loader(train_loader, num_classes):
"""
Вычисляет веса классов из train_loader, устойчиво к отсутствующим классам.
Если какой-либо класс отсутствует в выборке, ему будет присвоен вес 0.0.
:param train_loader: DataLoader с one-hot метками
:param num_classes: Общее количество классов
:return: np.ndarray весов длины num_classes
"""
all_labels = []
for batch in train_loader:
if batch is None:
continue
all_labels.extend(batch["label"].argmax(dim=1).tolist())
if not all_labels:
raise ValueError("Нет ни одной метки в train_loader для вычисления весов классов.")
present_classes = np.unique(all_labels)
if len(present_classes) < num_classes:
missing = set(range(num_classes)) - set(present_classes)
logging.info(f"[!] Отсутствуют метки для классов: {sorted(missing)}")
# Вычисляем веса только по тем классам, что есть
weights_partial = compute_class_weight(
class_weight="balanced",
classes=present_classes,
y=all_labels
)
# Собираем полный вектор весов
full_weights = np.zeros(num_classes, dtype=np.float32)
for cls, w in zip(present_classes, weights_partial):
full_weights[cls] = w
return full_weights
def make_dataset_and_loader(config, split: str, only_dataset: str = None):
"""
Универсальная функция: объединяет датасеты, или возвращает один при only_dataset.
"""
datasets = []
if not hasattr(config, "datasets") or not config.datasets:
raise ValueError("⛔ В конфиге не указана секция [datasets].")
for dataset_name, dataset_cfg in config.datasets.items():
if only_dataset and dataset_name != only_dataset:
continue
csv_path = dataset_cfg["csv_path"].format(base_dir=dataset_cfg["base_dir"], split=split)
wav_dir = dataset_cfg["wav_dir"].format(base_dir=dataset_cfg["base_dir"], split=split)
logging.info(f"[{dataset_name.upper()}] Split={split}: CSV={csv_path}, WAV_DIR={wav_dir}")
dataset = DatasetMultiModal(
csv_path = csv_path,
wav_dir = wav_dir,
emotion_columns = config.emotion_columns,
split = split,
sample_rate = config.sample_rate,
wav_length = config.wav_length,
whisper_model = config.whisper_model,
text_column = config.text_column,
use_whisper_for_nontrain_if_no_text = config.use_whisper_for_nontrain_if_no_text,
whisper_device = config.whisper_device,
subset_size = config.subset_size,
merge_probability = config.merge_probability
)
datasets.append(dataset)
if not datasets:
raise ValueError(f"⚠️ Для split='{split}' не найдено ни одного подходящего датасета.")
# Объединяем только если их несколько
full_dataset = datasets[0] if len(datasets) == 1 else ConcatDataset(datasets)
loader = DataLoader(
full_dataset,
batch_size=config.batch_size,
shuffle=(split == "train"),
num_workers=config.num_workers,
collate_fn=custom_collate_fn
)
return full_dataset, loader
def run_eval(model, loader, audio_extractor, text_extractor, criterion, device="cuda"):
"""
Оценка модели на loader'е. Возвращает (loss, uar, war, mf1, wf1).
"""
model.eval()
total_loss = 0.0
total_preds = []
total_targets = []
total = 0
with torch.no_grad():
for batch in tqdm(loader):
if batch is None:
continue
audio = batch["audio"].to(device)
labels = batch["label"].to(device)
texts = batch["text"]
audio_emb = audio_extractor.extract(audio)
text_emb = text_extractor.extract(texts)
logits = model(audio_emb, text_emb)
target = labels.argmax(dim=1)
loss = criterion(logits, target)
bs = audio.shape[0]
total_loss += loss.item() * bs
total += bs
preds = logits.argmax(dim=1)
total_preds.extend(preds.cpu().numpy().tolist())
total_targets.extend(target.cpu().numpy().tolist())
avg_loss = total_loss / total
uar_m = uar(total_targets, total_preds)
war_m = war(total_targets, total_preds)
mf1_m = mf1(total_targets, total_preds)
wf1_m = wf1(total_targets, total_preds)
return avg_loss, uar_m, war_m, mf1_m, wf1_m
def train_once(config, train_loader, dev_loaders, test_loaders, metrics_csv_path=None):
"""
Логика обучения (train/dev/test).
Возвращает лучшую метрику на dev и словарь метрик.
"""
logging.info("== Запуск тренировки (train/dev/test) ==")
csv_writer = None
csv_file = None
if metrics_csv_path:
csv_file = open(metrics_csv_path, mode="w", newline="", encoding="utf-8")
csv_writer = csv.writer(csv_file)
csv_writer.writerow(["split", "epoch", "dataset", "loss", "uar", "war", "mf1", "wf1", "mean"])
# Seed
if config.random_seed > 0:
random.seed(config.random_seed)
torch.manual_seed(config.random_seed)
logging.info(f"== Фиксируем random seed: {config.random_seed}")
else:
logging.info("== Random seed не фиксирован (0).")
device = "cuda" if torch.cuda.is_available() else "cpu"
# Экстракторы
audio_extractor = AudioEmbeddingExtractor(config)
text_extractor = TextEmbeddingExtractor(config)
# Параметры
hidden_dim = config.hidden_dim
num_classes = len(config.emotion_columns)
num_transformer_heads = config.num_transformer_heads
num_graph_heads = config.num_graph_heads
hidden_dim_gated = config.hidden_dim_gated
mode = config.mode
positional_encoding = config.positional_encoding
dropout = config.dropout
out_features = config.out_features
lr = config.lr
num_epochs = config.num_epochs
tr_layer_number = config.tr_layer_number
max_patience = config.max_patience
dict_models = {
'BiFormer': BiFormer,
'BiGraphFormer': BiGraphFormer,
'BiGatedGraphFormer': BiGatedGraphFormer,
# 'MultiModalTransformer_v5': MultiModalTransformer_v5,
# 'MultiModalTransformer_v4': MultiModalTransformer_v4,
# 'MultiModalTransformer_v3': MultiModalTransformer_v3
}
model_cls = dict_models[config.model_name]
model = model_cls(
audio_dim = config.audio_embedding_dim,
text_dim = config.text_embedding_dim,
hidden_dim = hidden_dim,
hidden_dim_gated = hidden_dim_gated,
num_transformer_heads = num_transformer_heads,
num_graph_heads = num_graph_heads,
seg_len = config.max_tokens,
mode = mode,
dropout = dropout,
positional_encoding = positional_encoding,
out_features = out_features,
tr_layer_number = tr_layer_number,
device = device,
num_classes = num_classes
).to(device)
# Оптимизатор и лосс
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
class_weights = get_class_weights_from_loader(train_loader, num_classes)
criterion = WeightedCrossEntropyLoss(class_weights)
logging.info("Class weights: " + ", ".join(f"{name}={weight:.4f}" for name, weight in zip(config.emotion_columns, class_weights)))
# LR Scheduler
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer,
mode="max",
factor=0.5,
patience=2,
min_lr=1e-7
)
# Early stopping по dev
best_dev_mean = float("-inf")
best_dev_metrics = {}
patience_counter = 0
for epoch in range(num_epochs):
logging.info(f"\n=== Эпоха {epoch} ===")
model.train()
total_loss = 0.0
total_samples = 0
total_preds = []
total_targets = []
for batch in tqdm(train_loader):
if batch is None:
continue
audio = batch["audio"].to(device)
labels = batch["label"].to(device)
texts = batch["text"]
audio_emb = audio_extractor.extract(audio)
text_emb = text_extractor.extract(texts)
logits = model(audio_emb, text_emb)
target = labels.argmax(dim=1)
loss = criterion(logits, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
bs = audio.shape[0]
total_loss += loss.item() * bs
preds = logits.argmax(dim=1)
total_preds.extend(preds.cpu().numpy().tolist())
total_targets.extend(target.cpu().numpy().tolist())
total_samples += bs
train_loss = total_loss / total_samples
uar_m = uar(total_targets, total_preds)
war_m = war(total_targets, total_preds)
mf1_m = mf1(total_targets, total_preds)
wf1_m = wf1(total_targets, total_preds)
mean_train = np.mean([uar_m, war_m, mf1_m, wf1_m])
logging.info(
f"[TRAIN] Loss={train_loss:.4f}, UAR={uar_m:.4f}, WAR={war_m:.4f}, "
f"MF1={mf1_m:.4f}, WF1={wf1_m:.4f}, MEAN={mean_train:.4f}"
)
# --- DEV ---
dev_means = []
dev_metrics_by_dataset = []
for name, loader in dev_loaders:
d_loss, d_uar, d_war, d_mf1, d_wf1 = run_eval(
model, loader, audio_extractor, text_extractor, criterion, device
)
d_mean = np.mean([d_uar, d_war, d_mf1, d_wf1])
dev_means.append(d_mean)
if csv_writer:
csv_writer.writerow(["dev", epoch, name, d_loss, d_uar, d_war, d_mf1, d_wf1, d_mean])
logging.info(
f"[DEV:{name}] Loss={d_loss:.4f}, UAR={d_uar:.4f}, WAR={d_war:.4f}, "
f"MF1={d_mf1:.4f}, WF1={d_wf1:.4f}, MEAN={d_mean:.4f}"
)
dev_metrics_by_dataset.append({
"name": name,
"loss": d_loss,
"uar": d_uar,
"war": d_war,
"mf1": d_mf1,
"wf1": d_wf1,
"mean": d_mean,
})
mean_dev = np.mean(dev_means)
scheduler.step(mean_dev)
if mean_dev > best_dev_mean:
best_dev_mean = mean_dev
patience_counter = 0
best_dev_metrics = {
"mean": mean_dev
}
best_dev_metrics["by_dataset"] = dev_metrics_by_dataset
else:
patience_counter += 1
if patience_counter >= max_patience:
logging.info(f"Early stopping: {max_patience} эпох без улучшения.")
break
# --- TEST ---
for name, loader in test_loaders:
t_loss, t_uar, t_war, t_mf1, t_wf1 = run_eval(
model, loader, audio_extractor, text_extractor, criterion, device
)
t_mean = np.mean([t_uar, t_war, t_mf1, t_wf1])
logging.info(
f"[TEST:{name}] Loss={t_loss:.4f}, UAR={t_uar:.4f}, WAR={t_war:.4f}, "
f"MF1={t_mf1:.4f}, WF1={t_wf1:.4f}, MEAN={t_mean:.4f}"
)
if csv_writer:
csv_writer.writerow(["test", epoch, name, t_loss, t_uar, t_war, t_mf1, t_wf1, t_mean])
if csv_file:
csv_file.close()
logging.info("Тренировка завершена. Все split'ы обработаны!")
return best_dev_mean, best_dev_metrics
|