Spaces:
Running
Running
File size: 18,108 Bytes
960b1a0 92da7ef 960b1a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
# data_loading/feature_extractor.py
import torch
import logging
import numpy as np
import torch.nn.functional as F
from transformers import (
AutoFeatureExtractor,
AutoModel,
AutoTokenizer,
AutoModelForAudioClassification,
Wav2Vec2Processor
)
from data_loading.pretrained_extractors import EmotionModel, get_model_mamba, Mamba
# DEVICE = torch.device('cuda')
DEVICE = torch.device('cpu')
class PretrainedAudioEmbeddingExtractor:
"""
Извлекает эмбеддинги из аудио, используя модель (например 'amiriparian/ExHuBERT'),
с учётом pooling, нормализации и т.д.
"""
def __init__(self, config):
"""
Ожидается, что в config есть поля:
- audio_model_name (str) : название модели (ExHuBERT и т.п.)
- emb_device (str) : "cpu" или "cuda"
- audio_pooling (str | None) : "mean", "cls", "max", "min", "last" или None (пропустить пуллинг)
- emb_normalize (bool) : делать ли L2-нормализацию выхода
- max_audio_frames (int) : ограничение длины по временной оси (если 0 - не ограничивать)
"""
self.config = config
self.device = config.emb_device
self.model_name = config.audio_model_name
self.pooling = config.audio_pooling # может быть None
self.normalize_output = config.emb_normalize
self.max_audio_frames = getattr(config, "max_audio_frames", 0)
self.audio_classifier_checkpoint = config.audio_classifier_checkpoint
# Инициализируем processor и audio_embedder
self.processor = Wav2Vec2Processor.from_pretrained(self.model_name)
self.audio_embedder = EmotionModel.from_pretrained(self.model_name).to(self.device)
# Загружаем модель
self.classifier_model = self.load_classifier_model_from_checkpoint(self.audio_classifier_checkpoint)
def extract(self, waveform: torch.Tensor, sample_rate=16000):
"""
Извлекает эмбеддинги из аудиоданных.
:param waveform: Тензор формы (T).
:param sample_rate: Частота дискретизации (int).
:return: Тензоры:
вернётся (B, classes), (B, sequence_length, hidden_dim).
"""
embeddings = self.process_audio(waveform, sample_rate)
tensor_emb = torch.tensor(embeddings, dtype=torch.float32).to(self.device)
lengths = [tensor_emb.shape[1]]
with torch.no_grad():
logits, hidden = self.classifier_model(tensor_emb, lengths, with_features=True)
# Если pooling=None => вернём (B, seq_len, hidden_dim)
if hidden.dim() == 3:
if self.pooling is None:
emb = hidden
else:
if self.pooling == "mean":
emb = hidden.mean(dim=1)
elif self.pooling == "cls":
emb = hidden[:, 0, :]
elif self.pooling == "max":
emb, _ = hidden.max(dim=1)
elif self.pooling == "min":
emb, _ = hidden.min(dim=1)
elif self.pooling == "last":
emb = hidden[:, -1, :]
elif self.pooling == "sum":
emb = hidden.sum(dim=1)
else:
emb = hidden.mean(dim=1)
else:
# На всякий случай, если получилось (B, hidden_dim)
emb = hidden
if self.normalize_output and emb.dim() == 2:
emb = F.normalize(emb, p=2, dim=1)
return logits, emb
def process_audio(self, signal: np.ndarray, sampling_rate: int) -> np.ndarray:
inputs = self.processor(signal, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
input_values = inputs["input_values"].to(self.device)
with torch.no_grad():
outputs = self.audio_embedder(input_values)
embeddings = outputs
return embeddings.detach().cpu().numpy()
def load_classifier_model_from_checkpoint(self, checkpoint_path):
if checkpoint_path == "best_audio_model.pt":
checkpoint = torch.load(checkpoint_path, map_location=self.device)
exp_params = checkpoint['exp_params']
classifier_model = get_model_mamba(exp_params).to(self.device)
classifier_model.load_state_dict(checkpoint['model_state_dict'])
elif checkpoint_path == "best_audio_model_2.pt":
model_params = {
"input_size": 1024,
"d_model": 256,
"num_layers": 2,
"num_classes": 7,
"dropout": 0.2
}
classifier_model = get_model_mamba(model_params).to(self.device)
classifier_model.load_state_dict(torch.load(checkpoint_path, map_location=self.device))
classifier_model.eval()
return classifier_model
class AudioEmbeddingExtractor:
"""
Извлекает эмбеддинги из аудио, используя модель (например 'amiriparian/ExHuBERT'),
с учётом pooling, нормализации и т.д.
"""
def __init__(self, config):
"""
Ожидается, что в config есть поля:
- audio_model_name (str) : название модели (ExHuBERT и т.п.)
- emb_device (str) : "cpu" или "cuda"
- audio_pooling (str | None) : "mean", "cls", "max", "min", "last" или None (пропустить пуллинг)
- emb_normalize (bool) : делать ли L2-нормализацию выхода
- max_audio_frames (int) : ограничение длины по временной оси (если 0 - не ограничивать)
"""
self.config = config
self.device = config.emb_device
self.model_name = config.audio_model_name
self.pooling = config.audio_pooling # может быть None
self.normalize_output = config.emb_normalize
# self.max_audio_frames = getattr(config, "max_audio_frames", 0)
self.max_audio_frames = config.sample_rate * config.wav_length
# Попробуем загрузить feature_extractor (не у всех моделей доступен)
try:
self.feature_extractor = AutoFeatureExtractor.from_pretrained(self.model_name)
logging.info(f"[Audio] Using AutoFeatureExtractor for '{self.model_name}'")
except Exception as e:
self.feature_extractor = None
logging.warning(f"[Audio] No built-in FeatureExtractor found. Model={self.model_name}. Error: {e}")
# Загружаем модель
# Если у модели нет head-классификации, бывает достаточно AutoModel
try:
self.model = AutoModel.from_pretrained(
self.model_name,
output_hidden_states=True # чтобы точно был last_hidden_state
).to(self.device)
logging.info(f"[Audio] Loaded AutoModel with output_hidden_states=True: {self.model_name}")
except Exception as e:
logging.warning(f"[Audio] Fallback to AudioClassification model. Reason: {e}")
self.model = AutoModelForAudioClassification.from_pretrained(
self.model_name,
output_hidden_states=True
).to(self.device)
def extract(self, waveform_batch: torch.Tensor, sample_rate=16000):
"""
Извлекает эмбеддинги из аудиоданных.
:param waveform_batch: Тензор формы (B, T) или (B, 1, T).
:param sample_rate: Частота дискретизации (int).
:return: Тензор:
- если pooling != None, будет (B, hidden_dim)
- если pooling == None и last_hidden_state имел форму (B, seq_len, hidden_dim),
вернётся (B, seq_len, hidden_dim).
"""
# Если пришло (B, 1, T), уберём ось "1"
if waveform_batch.dim() == 3 and waveform_batch.shape[1] == 1:
waveform_batch = waveform_batch.squeeze(1) # -> (B, T)
# Усечение по времени, если нужно
if self.max_audio_frames > 0 and waveform_batch.shape[1] > self.max_audio_frames:
waveform_batch = waveform_batch[:, :self.max_audio_frames]
# Если есть feature_extractor - используем
if self.feature_extractor is not None:
inputs = self.feature_extractor(
waveform_batch,
sampling_rate=sample_rate,
return_tensors="pt",
truncation=True,
max_length=self.max_audio_frames if self.max_audio_frames > 0 else None
)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
outputs = self.model(input_values=inputs["input_values"])
else:
# Иначе подадим напрямую "input_values" на модель
inputs = {"input_values": waveform_batch.to(self.device)}
outputs = self.model(**inputs)
# Теперь outputs может быть BaseModelOutput (с last_hidden_state, hidden_states, etc.)
# Или SequenceClassifierOutput (с logits), если это модель-классификатор
if hasattr(outputs, "last_hidden_state"):
# (B, seq_len, hidden_dim)
hidden = outputs.last_hidden_state
# logging.debug(f"[Audio] last_hidden_state shape: {hidden.shape}")
elif hasattr(outputs, "logits"):
# logits: (B, num_labels)
# Для пуллинга по "seq_len" притворимся, что seq_len=1
hidden = outputs.logits.unsqueeze(1) # (B,1,num_labels)
logging.debug(f"[Audio] Found logits shape: {outputs.logits.shape} => hidden={hidden.shape}")
else:
# Модель может сразу возвращать тензор
hidden = outputs
# Если у нас 2D-тензор (B, hidden_dim), значит всё уже спулено
if hidden.dim() == 2:
emb = hidden
elif hidden.dim() == 3:
# (B, seq_len, hidden_dim)
if self.pooling is None:
# Возвращаем как есть
emb = hidden
else:
# Выполним пуллинг
if self.pooling == "mean":
emb = hidden.mean(dim=1)
elif self.pooling == "cls":
emb = hidden[:, 0, :] # [B, hidden_dim]
elif self.pooling == "max":
emb, _ = hidden.max(dim=1)
elif self.pooling == "min":
emb, _ = hidden.min(dim=1)
elif self.pooling == "last":
emb = hidden[:, -1, :]
else:
emb = hidden.mean(dim=1) # на всякий случай fallback
else:
# На всякий: если ещё какая-то форма
raise ValueError(f"[Audio] Unexpected hidden shape={hidden.shape}, pooling={self.pooling}")
if self.normalize_output and emb.dim() == 2:
emb = F.normalize(emb, p=2, dim=1)
return emb
class TextEmbeddingExtractor:
"""
Извлекает эмбеддинги из текста (например 'jinaai/jina-embeddings-v3'),
с учётом pooling (None, mean, cls, и т.д.), нормализации и усечения.
"""
def __init__(self, config):
"""
Параметры в config:
- text_model_name (str)
- emb_device (str)
- text_pooling (str | None)
- emb_normalize (bool)
- max_tokens (int)
"""
self.config = config
self.device = config.emb_device
self.model_name = config.text_model_name
self.pooling = config.text_pooling # может быть None
self.normalize_output = config.emb_normalize
self.max_tokens = config.max_tokens
# trust_remote_code=True нужно для моделей вроде jina
logging.info(f"[Text] Loading tokenizer for {self.model_name} with trust_remote_code=True")
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
trust_remote_code=True
)
logging.info(f"[Text] Loading model for {self.model_name} with trust_remote_code=True")
self.model = AutoModel.from_pretrained(
self.model_name,
trust_remote_code=True,
output_hidden_states=True, # хотим иметь last_hidden_state
force_download=False
).to(self.device)
def extract(self, text_list):
"""
:param text_list: список строк (или одна строка)
:return: тензор (B, hidden_dim) или (B, seq_len, hidden_dim), если pooling=None
"""
if isinstance(text_list, str):
text_list = [text_list]
inputs = self.tokenizer(
text_list,
padding="max_length",
truncation=True,
max_length=self.max_tokens,
return_tensors="pt"
)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = self.model(**inputs)
# Обычно у AutoModel last_hidden_state.shape = (B, seq_len, hidden_dim)
hidden = outputs.last_hidden_state
# logging.debug(f"[Text] last_hidden_state shape: {hidden.shape}")
# Если pooling=None => вернём (B, seq_len, hidden_dim)
if hidden.dim() == 3:
if self.pooling is None:
emb = hidden
else:
if self.pooling == "mean":
emb = hidden.mean(dim=1)
elif self.pooling == "cls":
emb = hidden[:, 0, :]
elif self.pooling == "max":
emb, _ = hidden.max(dim=1)
elif self.pooling == "min":
emb, _ = hidden.min(dim=1)
elif self.pooling == "last":
emb = hidden[:, -1, :]
elif self.pooling == "sum":
emb = hidden.sum(dim=1)
else:
emb = hidden.mean(dim=1)
else:
# На всякий случай, если получилось (B, hidden_dim)
emb = hidden
if self.normalize_output and emb.dim() == 2:
emb = F.normalize(emb, p=2, dim=1)
return emb
class PretrainedTextEmbeddingExtractor:
"""
Извлекает эмбеддинги из текста (например 'jinaai/jina-embeddings-v3'),
с учётом pooling (None, mean, cls, и т.д.), нормализации и усечения.
"""
def __init__(self, config):
"""
Параметры в config:
- text_model_name (str)
- emb_device (str)
- text_pooling (str | None)
- emb_normalize (bool)
- max_tokens (int)
"""
self.config = config
self.device = config.emb_device
self.model_name = config.text_model_name
self.pooling = config.text_pooling # может быть None
self.normalize_output = config.emb_normalize
self.max_tokens = config.max_tokens
self.text_classifier_checkpoint = config.text_classifier_checkpoint
self.model = Mamba(num_layers = 2, d_input = 1024, d_model = 512, num_classes=7, model_name=self.model_name, max_tokens=self.max_tokens, pooling=None).to(self.device)
checkpoint = torch.load(self.text_classifier_checkpoint, map_location=DEVICE)
self.model.load_state_dict(checkpoint['model_state_dict'])
self.model.eval()
def extract(self, text_list):
"""
:param text_list: список строк (или одна строка)
:return: тензор (B, hidden_dim) или (B, seq_len, hidden_dim), если pooling=None
"""
if isinstance(text_list, str):
text_list = [text_list]
with torch.no_grad():
logits, hidden = self.model(text_list, with_features=True)
if hidden.dim() == 3:
if self.pooling is None:
emb = hidden
else:
if self.pooling == "mean":
emb = hidden.mean(dim=1)
elif self.pooling == "cls":
emb = hidden[:, 0, :]
elif self.pooling == "max":
emb, _ = hidden.max(dim=1)
elif self.pooling == "min":
emb, _ = hidden.min(dim=1)
elif self.pooling == "last":
emb = hidden[:, -1, :]
elif self.pooling == "sum":
emb = hidden.sum(dim=1)
else:
emb = hidden.mean(dim=1)
else:
# На всякий случай, если получилось (B, hidden_dim)
emb = hidden
if self.normalize_output and emb.dim() == 2:
emb = F.normalize(emb, p=2, dim=1)
return logits, emb
|