File size: 34,789 Bytes
5a169ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 |
import os
import torch
import nibabel as nib
from flask import Flask, request, render_template, redirect, url_for, flash, jsonify
import tempfile
import yaml
import traceback # For detailed error printing
import zipfile
import dicom2nifti
import shutil
import subprocess # To run unzip command
import SimpleITK as sitk
import itk
import numpy as np
from scipy.signal import medfilt
import skimage.filters
import cv2 # For Gaussian Blur
import io # For saving plots to memory
import base64 # For encoding plots
import uuid # For unique IDs
# Configure Matplotlib for non-GUI backend *before* importing pyplot
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
# --- Preprocessing Imports ---
try:
# Adjust import path based on Docker structure
# Assumes HD_BET is now at /app/BrainIAC/HD_BET
from HD_BET.run import run_hd_bet
# Import MONAI saliency visualizer
from monai.visualize.gradient_based import GuidedBackpropSmoothGrad
except ImportError as e:
print(f"Could not import HD_BET or MONAI visualize: {e}. Advanced features might fail.")
run_hd_bet = None
GuidedBackpropSmoothGrad = None
# Import necessary components from your existing modules
from model import Backbone, SingleScanModel, Classifier
# Removed: from dataset2 import NormalSynchronizedTransform3D
# Import specific MONAI transforms needed
from monai.transforms import Resized, ScaleIntensityd # Removed ToTensord, will handle manually
app = Flask(__name__)
app.secret_key = 'supersecretkey' # Needed for flashing messages
# --- Constants for Preprocessing ---
APP_DIR = os.path.dirname(__file__)
TEMPLATE_DIR = os.path.join(APP_DIR, "golden_image", "mni_templates")
PARAMS_RIGID_PATH = os.path.join(APP_DIR, "golden_image", "mni_templates", "Parameters_Rigid.txt")
DEFAULT_TEMPLATE_PATH = os.path.join(TEMPLATE_DIR, "nihpd_asym_13.0-18.5_t1w.nii") # Using adult template as default
HD_BET_CONFIG_PATH = os.path.join(APP_DIR, "HD_BET", "config.py")
HD_BET_MODEL_DIR = os.path.join(APP_DIR, "hdbet_model") # Path to copied models
# --- Configuration Loading ---
def load_config():
# Assuming config.yml is in the same directory as app.py
config_path = os.path.join(APP_DIR, 'config.yml')
try:
with open(config_path, 'r') as file:
config = yaml.safe_load(file)
# Add default image_size if not present in config
if 'data' not in config: config['data'] = {}
if 'image_size' not in config['data']: config['data']['image_size'] = [128, 128, 128]
except FileNotFoundError:
print(f"Error: Configuration file not found at {config_path}")
# Provide default config or handle error appropriately
config = {
'gpu': {'device': 'cpu'},
'infer': {'checkpoints': 'checkpoints/brainage_model_latest.pt'},
'data': {'image_size': [128, 128, 128]} # Default image size
}
return config
config = load_config()
# Ensure image_size is available, e.g., from config or a default
DEFAULT_IMAGE_SIZE = (128, 128, 128)
image_size_cfg = config.get('data', {}).get('image_size', DEFAULT_IMAGE_SIZE)
# Validate image_size format
if not isinstance(image_size_cfg, (list, tuple)) or len(image_size_cfg) != 3:
print(f"Warning: Invalid image_size in config ({image_size_cfg}). Using default {DEFAULT_IMAGE_SIZE}.")
image_size = DEFAULT_IMAGE_SIZE
else:
image_size = tuple(image_size_cfg) # Ensure it's a tuple for transforms
# --- Model Loading ---
def load_model(device, checkpoint_path):
backbone = Backbone()
classifier = Classifier(d_model=2048) # Make sure d_model matches your trained model
model = SingleScanModel(backbone, classifier)
try:
# Construct absolute path if checkpoint_path is relative
relative_path = config.get('infer', {}).get('checkpoints', 'checkpoints/brainage_model_latest.pt')
# Use path relative to app.py location
checkpoint_path_abs = os.path.join(APP_DIR, relative_path)
checkpoint = torch.load(checkpoint_path_abs, map_location=device)
# Adjust key if necessary based on how model was saved
if 'model_state_dict' in checkpoint:
model.load_state_dict(checkpoint['model_state_dict'])
else:
model.load_state_dict(checkpoint)
model.to(device)
model.eval()
print(f"Model loaded successfully from {checkpoint_path_abs} onto {device}.")
return model
except FileNotFoundError:
print(f"Error: Checkpoint file not found at {checkpoint_path_abs}")
return None
except Exception as e:
print(f"Error loading model checkpoint: {e}")
traceback.print_exc()
return None
device = torch.device(config.get('gpu', {}).get('device', 'cpu')) # Default to CPU
model = load_model(device, config) # Pass full config for path finding
# --- Preprocessing Functions from preprocess_utils.py ---
def bias_field_correction(img_array):
"""Performs N4 bias field correction using SimpleITK."""
image = sitk.GetImageFromArray(img_array)
# Ensure image is float32 for N4
if image.GetPixelID() != sitk.sitkFloat32:
image = sitk.Cast(image, sitk.sitkFloat32)
maskImage = sitk.OtsuThreshold(image, 0, 1, 200)
corrector = sitk.N4BiasFieldCorrectionImageFilter()
numberFittingLevels = 4
# Define iterations per level more robustly
max_iters = [min(50 * (2**i), 200) for i in range(numberFittingLevels)]
corrector.SetMaximumNumberOfIterations(max_iters)
# Set convergence threshold (optional, can speed up)
# corrector.SetConvergenceThreshold(1e-6)
print(" Running N4 Bias Field Correction...")
corrected_image = corrector.Execute(image, maskImage)
print(" N4 Correction finished.")
return sitk.GetArrayFromImage(corrected_image)
def denoise(volume, kernel_size=3):
"""Applies median filter for denoising."""
print(f" Applying median filter denoising (kernel={kernel_size})...")
return medfilt(volume, kernel_size)
def rescale_intensity(volume, percentils=[0.5, 99.5], bins_num=256):
"""Rescales intensity after removing background via Otsu."""
print(" Rescaling intensity...")
# Ensure input is float for Otsu and calculations
volume_float = volume.astype(np.float32)
try:
t = skimage.filters.threshold_otsu(volume_float, nbins=256)
print(f" Otsu threshold found: {t}")
volume_masked = np.copy(volume_float)
volume_masked[volume_masked < t] = 0 # Apply mask based on original values
obj_volume = volume_masked[np.where(volume_masked > 0)]
except ValueError: # Handle cases with near-uniform intensity
print(" Otsu failed (likely uniform image), skipping background mask.")
obj_volume = volume_float.flatten()
if obj_volume.size == 0:
print(" Warning: No foreground voxels found after Otsu. Scaling full volume.")
obj_volume = volume_float.flatten() # Fallback to full volume
min_value = np.min(obj_volume)
max_value = np.max(obj_volume)
else:
min_value = np.percentile(obj_volume, percentils[0])
max_value = np.percentile(obj_volume, percentils[1])
print(f" Intensity range used for scaling: [{min_value:.2f}, {max_value:.2f}]")
# Avoid division by zero if max == min
denominator = max_value - min_value
if denominator < 1e-6: denominator = 1e-6
# Create a copy to modify for output
output_volume = np.copy(volume_float)
# Apply scaling only to the object volume identified (or full volume as fallback)
if bins_num == 0:
# Scale to 0-1 (float)
output_volume = (volume_float - min_value) / denominator
output_volume = np.clip(output_volume, 0.0, 1.0) # Clip results to [0, 1]
else:
# Scale and bin
output_volume = np.round((volume_float - min_value) / denominator * (bins_num - 1))
output_volume = np.clip(output_volume, 0, bins_num - 1) # Ensure within bin range
# Ensure output is float32 for consistency
return output_volume.astype(np.float32)
def equalize_hist(volume, bins_num=256):
"""Performs histogram equalization on non-zero voxels."""
print(" Performing histogram equalization...")
# Create a mask of non-zero voxels
mask = volume > 1e-6 # Use a small epsilon for float comparison
obj_volume = volume[mask]
if obj_volume.size == 0:
print(" Warning: No non-zero voxels found for histogram equalization. Skipping.")
return volume # Return original volume if no foreground
# Compute histogram and CDF on the non-zero voxels
hist, bins = np.histogram(obj_volume, bins_num, range=(obj_volume.min(), obj_volume.max()))
cdf = hist.cumsum()
# Normalize CDF
cdf_normalized = (bins_num - 1) * cdf / float(cdf[-1])
# Interpolate new values for the object volume
equalized_obj_volume = np.interp(obj_volume, bins[:-1], cdf_normalized)
# Create a copy of the original volume to put the results back
equalized_volume = np.copy(volume)
equalized_volume[mask] = equalized_obj_volume
# Ensure output is float32
return equalized_volume.astype(np.float32)
def enhance(img_array, run_bias_correction=True, kernel_size=3, percentils=[0.5, 99.5], bins_num=256, run_equalize_hist=True):
"""Full enhancement pipeline from preprocess_utils."""
print("Starting enhancement pipeline...")
volume = img_array.astype(np.float32) # Ensure float input
try:
if run_bias_correction:
volume = bias_field_correction(volume)
volume = denoise(volume, kernel_size)
volume = rescale_intensity(volume, percentils, bins_num)
if run_equalize_hist:
volume = equalize_hist(volume, bins_num)
print("Enhancement pipeline finished.")
return volume
except Exception as e:
print(f"Error during enhancement: {e}")
traceback.print_exc()
raise RuntimeError(f"Failed enhancing image: {e}") # Re-raise to stop processing
# --- Registration Function (modified enhance call) ---
def register_image(input_nifti_path, output_nifti_path):
"""Registers input NIfTI to the default template using Elastix."""
print(f"Registering {input_nifti_path} to {DEFAULT_TEMPLATE_PATH}")
if not os.path.exists(PARAMS_RIGID_PATH):
raise FileNotFoundError(f"Elastix parameter file not found at {PARAMS_RIGID_PATH}")
if not os.path.exists(DEFAULT_TEMPLATE_PATH):
raise FileNotFoundError(f"Default template file not found at {DEFAULT_TEMPLATE_PATH}")
fixed_image = itk.imread(DEFAULT_TEMPLATE_PATH, itk.F)
moving_image = itk.imread(input_nifti_path, itk.F)
parameter_object = itk.ParameterObject.New()
parameter_object.AddParameterFile(PARAMS_RIGID_PATH)
result_image, _ = itk.elastix_registration_method(
fixed_image, moving_image,
parameter_object=parameter_object,
log_to_console=False # Keep console clean
)
itk.imwrite(result_image, output_nifti_path)
print(f"Registration output saved to {output_nifti_path}")
# --- Enhanced Image Function (calls actual enhance) ---
def run_enhance_on_file(input_nifti_path, output_nifti_path):
"""Reads NIfTI, runs enhance pipeline, saves NIfTI."""
print(f"Running full enhancement on {input_nifti_path}")
img_sitk = sitk.ReadImage(input_nifti_path)
img_array = sitk.GetArrayFromImage(img_sitk)
# Run the actual enhancement pipeline
enhanced_array = enhance(img_array, run_bias_correction=True) # Assuming N4 is desired
enhanced_img_sitk = sitk.GetImageFromArray(enhanced_array)
enhanced_img_sitk.CopyInformation(img_sitk) # Preserve metadata
sitk.WriteImage(enhanced_img_sitk, output_nifti_path)
print(f"Enhanced image saved to {output_nifti_path}")
# --- Skull Stripping Function (Set Environment Variable) ---
def run_skull_stripping(input_nifti_path, output_dir):
"""Runs HD-BET skull stripping."""
print(f"Running HD-BET skull stripping on {input_nifti_path}")
if run_hd_bet is None:
raise RuntimeError("HD-BET module could not be imported. Cannot perform skull stripping.")
# Removed environment variable setting as path is fixed in HD_BET/paths.py
# # Set environment variable *before* calling run_hd_bet
# # Ensure the target directory exists
# if not os.path.isdir(HD_BET_MODEL_DIR):
# raise FileNotFoundError(f"HD-BET model directory not found at specified path: {HD_BET_MODEL_DIR}")
# print(f"Setting HD_BET_MODELS environment variable to: {HD_BET_MODEL_DIR}")
# os.environ['HD_BET_MODELS'] = HD_BET_MODEL_DIR
# Check config path
if not os.path.exists(HD_BET_CONFIG_PATH):
alt_config_path = os.path.join(APP_DIR, "HD_BET", "HD_BET", "config.py")
if os.path.exists(alt_config_path):
print(f"Warning: Using alternative HD-BET config path: {alt_config_path}")
config_to_use = alt_config_path
else:
raise FileNotFoundError(f"HD-BET config file not found at {HD_BET_CONFIG_PATH} or {alt_config_path}")
else:
config_to_use = HD_BET_CONFIG_PATH
# Define output paths
base_name = os.path.basename(input_nifti_path).replace(".nii.gz", "").replace(".nii", "")
output_file_path = os.path.join(output_dir, f"{base_name}_bet.nii.gz")
output_mask_path = os.path.join(output_dir, f"{base_name}_bet_mask.nii.gz")
# Make sure output directory exists
os.makedirs(output_dir, exist_ok=True)
# Run HD-BET
run_hd_bet(input_nifti_path, output_file_path,
mode="fast",
device='cpu',
config_file=config_to_use,
postprocess=False,
do_tta=False,
keep_mask=True,
overwrite=True)
# Unset environment variable after use (optional, good practice)
# del os.environ['HD_BET_MODELS']
if not os.path.exists(output_file_path):
raise RuntimeError(f"HD-BET did not produce the expected output file: {output_file_path}")
print(f"Skull stripping output saved to {output_file_path}")
return output_file_path, output_mask_path
# --- Image Preprocessing ---
# Define necessary MONAI transforms directly
# Keys must match the dictionary keys we create later ('image')
resize_transform = Resized(keys=["image"], spatial_size=image_size)
scale_transform = ScaleIntensityd(keys=["image"], minv=0.0, maxv=1.0)
def preprocess_nifti(nifti_path):
"""Loads and preprocesses a NIfTI file, returning a 5D tensor."""
print(f"Preprocessing NIfTI: {nifti_path}")
scan_data = nib.load(nifti_path).get_fdata()
print(f" Loaded scan data shape: {scan_data.shape}")
scan_tensor = torch.tensor(scan_data, dtype=torch.float32).unsqueeze(0) # Add C dim
print(f" Shape after tensor+channel: {scan_tensor.shape}")
sample = {"image": scan_tensor}
sample_resized = resize_transform(sample)
print(f" Shape after resize: {sample_resized['image'].shape}")
sample_scaled = scale_transform(sample_resized)
print(f" Shape after scaling: {sample_scaled['image'].shape}")
input_tensor = sample_scaled["image"].unsqueeze(0).to(device) # Add B dim
print(f" Final shape for model: {input_tensor.shape}")
if input_tensor.dim() != 5:
raise ValueError(f"Preprocessing resulted in incorrect shape: {input_tensor.shape}. Expected 5D.")
return input_tensor
# --- Final NIfTI Preprocessing for Model ---
def preprocess_nifti_for_model(nifti_path):
"""Loads final NIfTI and prepares 5D tensor for the model."""
# ... (Same as previous preprocess_nifti function) ...
print(f"Preprocessing NIfTI for model: {nifti_path}")
scan_data = nib.load(nifti_path).get_fdata()
print(f" Loaded scan data shape: {scan_data.shape}")
scan_tensor = torch.tensor(scan_data, dtype=torch.float32).unsqueeze(0) # Add C dim
print(f" Shape after tensor+channel: {scan_tensor.shape}")
sample = {"image": scan_tensor}
sample_resized = resize_transform(sample)
print(f" Shape after resize: {sample_resized['image'].shape}")
sample_scaled = scale_transform(sample_resized)
print(f" Shape after scaling: {sample_scaled['image'].shape}")
input_tensor = sample_scaled["image"].unsqueeze(0).to(device) # Add B dim
print(f" Final shape for model: {input_tensor.shape}")
if input_tensor.dim() != 5:
raise ValueError(f"Preprocessing resulted in incorrect shape: {input_tensor.shape}. Expected 5D.")
return input_tensor
# --- Saliency Map Generation ---
def generate_saliency(model, input_tensor_5d):
"""Generates saliency map using GuidedBackpropSmoothGrad."""
if GuidedBackpropSmoothGrad is None:
raise ImportError("MONAI visualize components not imported. Cannot generate saliency map.")
if model is None:
raise ValueError("Model not loaded. Cannot generate saliency map.")
print("Generating saliency map...")
input_tensor_5d.requires_grad_(True)
# Use the backbone for saliency as in the original script
# Ensure model and backbone are on the correct device (CPU in this case)
visualizer = GuidedBackpropSmoothGrad(model=model.backbone.to(device),
stdev_spread=0.15,
n_samples=10,
magnitude=True)
try:
with torch.enable_grad():
saliency_map_5d = visualizer(input_tensor_5d.to(device))
print("Saliency map generated.")
# Detach, move to CPU, remove Batch and Channel dims for processing/plotting -> (D, H, W)
input_3d = input_tensor_5d.squeeze().cpu().detach().numpy()
saliency_3d = saliency_map_5d.squeeze().cpu().detach().numpy()
return input_3d, saliency_3d
except Exception as e:
print(f"Error during saliency map generation: {e}")
traceback.print_exc()
# Return None or empty arrays if generation fails
return None, None
finally:
# Ensure requires_grad is turned off if it was modified
input_tensor_5d.requires_grad_(False)
# --- Plotting Function for Single Slice ---
def create_plot_images_for_slice(mri_data_3d, saliency_data_3d, slice_index):
"""Creates base64 encoded PNGs for a specific axial slice index."""
print(f" Generating plots for slice index: {slice_index}")
if mri_data_3d is None or saliency_data_3d is None:
print(" Input or Saliency data is None, cannot generate plot.")
return None
if slice_index < 0 or slice_index >= mri_data_3d.shape[2]:
print(f" Error: Slice index {slice_index} out of bounds (0-{mri_data_3d.shape[2]-1}).")
return None
# Function to save plot to base64 string (copied from previous version)
def save_plot_to_base64(fig):
buf = io.BytesIO()
fig.savefig(buf, format='png', bbox_inches='tight', pad_inches=0, dpi=75)
plt.close(fig) # Close the figure immediately
buf.seek(0)
img_str = base64.b64encode(buf.read()).decode('utf-8')
buf.close()
return img_str
try:
mri_slice = mri_data_3d[:, :, slice_index]
saliency_slice_orig = saliency_data_3d[:, :, slice_index]
# --- Normalize MRI Slice (using volume stats if available, otherwise slice stats) ---
# For consistency, ideally pass volume stats, but recalculating per slice is fallback
p1_vol, p99_vol = np.percentile(mri_data_3d, (1, 99))
mri_norm_denom = p99_vol - p1_vol
if mri_norm_denom < 1e-6: mri_norm_denom = 1e-6
mri_slice_norm = np.clip(mri_slice, p1_vol, p99_vol)
mri_slice_norm = (mri_slice_norm - p1_vol) / mri_norm_denom
# --- Process Saliency Slice ---
saliency_slice = np.copy(saliency_slice_orig)
saliency_slice[saliency_slice < 0] = 0 # Ensure non-negative
saliency_slice_blurred = cv2.GaussianBlur(saliency_slice, (15, 15), 0)
# Use volume max for normalization if possible, fallback to slice max
s_max_vol = np.max(saliency_data_3d[saliency_data_3d >= 0]) # Max of non-negative values in volume
if s_max_vol < 1e-6: s_max_vol = 1e-6
# --- Add logging for the calculated global max ---
print(f" Calculated Global Max Saliency (s_max_vol) for normalization: {s_max_vol:.4f}")
# --------------------------------------------------
saliency_slice_norm = saliency_slice_blurred / s_max_vol
threshold_value = 0.0
saliency_slice_thresholded = np.where(saliency_slice_norm > threshold_value, saliency_slice_norm, 0)
# --- Generate Plots ---
slice_plots = {}
# Plot 1: Input Slice
fig1, ax1 = plt.subplots(figsize=(3, 3))
ax1.imshow(mri_slice_norm, cmap='gray', interpolation='none', origin='lower')
ax1.axis('off')
slice_plots['input_slice'] = save_plot_to_base64(fig1)
# Plot 2: Saliency Heatmap
fig2, ax2 = plt.subplots(figsize=(3, 3))
ax2.imshow(saliency_slice_thresholded, cmap='magma', interpolation='none', origin='lower')
ax2.axis('off')
slice_plots['heatmap_slice'] = save_plot_to_base64(fig2)
# Plot 3: Overlay
fig3, ax3 = plt.subplots(figsize=(3, 3))
ax3.imshow(mri_slice_norm, cmap='gray', interpolation='none', origin='lower')
if np.max(saliency_slice_thresholded) > 0:
# Remove fixed levels to let contour auto-determine levels based on slice data
ax3.contour(saliency_slice_thresholded, cmap='magma', origin='lower', linewidths=1.0)
ax3.axis('off')
slice_plots['overlay_slice'] = save_plot_to_base64(fig3)
print(f" Generated plots successfully for slice {slice_index}.")
return slice_plots
except Exception as e:
print(f"Error generating plots for slice {slice_index}: {e}")
traceback.print_exc()
return None
# --- Flask Routes ---
@app.route('/', methods=['GET'])
def index():
return render_template('index.html')
@app.route('/predict', methods=['POST'])
def predict():
if model is None:
flash('Model not loaded. Cannot perform prediction.', 'error')
return redirect(url_for('index'))
# Get form data
file_type = request.form.get('file_type')
run_preprocess_flag = request.form.get('preprocess') == 'yes'
generate_saliency_flag = request.form.get('generate_saliency') == 'yes' # Get saliency flag
file = request.files.get('scan_file')
# --- Basic Input Validation ---
if not file_type:
flash('Please select a file type (NIfTI or DICOM).', 'error')
return redirect(url_for('index'))
if not file or file.filename == '':
flash('No scan file selected', 'error')
return redirect(url_for('index'))
print(f"Received upload: type='{file_type}', filename='{file.filename}', preprocess={run_preprocess_flag}, saliency={generate_saliency_flag}")
# --- Setup Temporary Directory ---
# temp_dir_obj = tempfile.TemporaryDirectory() # <--- PROBLEM: Cleans up automatically
# Use mkdtemp to create a persistent temporary directory
# NOTE: Requires a manual cleanup strategy later!
try:
temp_dir = tempfile.mkdtemp()
except Exception as e:
print(f"Error creating temporary directory: {e}")
flash("Server error: Could not create temporary directory.", "error")
return redirect(url_for('index'))
# Generate a unique ID based on the temp directory name
unique_id = os.path.basename(temp_dir)
print(f"Created persistent temp directory: {temp_dir} (ID: {unique_id})")
nifti_for_preprocessing_path = None # Path to the NIfTI before optional preprocessing
try:
# --- Handle Upload and DICOM Conversion ---
# --- Handle NIfTI Upload ---
if file_type == 'nifti':
if not file.filename.endswith('.nii.gz'):
flash('Invalid file type for NIfTI selection. Please upload .nii.gz', 'error')
# temp_dir_obj.cleanup() # No object to cleanup, need manual rmtree
shutil.rmtree(temp_dir, ignore_errors=True)
return redirect(url_for('index'))
uploaded_file_path = os.path.join(temp_dir, "uploaded_scan.nii.gz")
file.save(uploaded_file_path)
print(f"Saved uploaded NIfTI file to: {uploaded_file_path}")
nifti_for_preprocessing_path = uploaded_file_path
# --- Handle DICOM Upload ---
elif file_type == 'dicom':
if not file.filename.endswith('.zip'):
flash('Invalid file type for DICOM selection. Please upload a .zip file.', 'error')
# temp_dir_obj.cleanup()
shutil.rmtree(temp_dir, ignore_errors=True)
return redirect(url_for('index'))
uploaded_zip_path = os.path.join(temp_dir, "dicom_files.zip")
file.save(uploaded_zip_path)
print(f"Saved uploaded DICOM zip to: {uploaded_zip_path}")
dicom_input_dir = os.path.join(temp_dir, "dicom_input")
nifti_output_dir = os.path.join(temp_dir, "nifti_output")
os.makedirs(dicom_input_dir, exist_ok=True)
os.makedirs(nifti_output_dir, exist_ok=True)
try:
# Use shutil.unpack_archive for better cross-platform compatibility potentially
shutil.unpack_archive(uploaded_zip_path, dicom_input_dir)
print(f"Unzip successful.")
except Exception as e:
print(f"Unzip failed: {e}")
flash(f'Error unzipping DICOM file: {e}', 'error')
# temp_dir_obj.cleanup()
shutil.rmtree(temp_dir, ignore_errors=True)
return redirect(url_for('index'))
try:
dicom2nifti.convert_directory(dicom_input_dir, nifti_output_dir, compression=True, reorient=True)
nifti_files = [f for f in os.listdir(nifti_output_dir) if f.endswith('.nii.gz')]
if not nifti_files:
raise RuntimeError("dicom2nifti did not produce a .nii.gz file.")
nifti_for_preprocessing_path = os.path.join(nifti_output_dir, nifti_files[0])
print(f"DICOM conversion successful. NIfTI file: {nifti_for_preprocessing_path}")
except Exception as e:
print(f"DICOM to NIfTI conversion failed: {e}")
flash(f'Error converting DICOM to NIfTI: {e}', 'error')
# temp_dir_obj.cleanup()
shutil.rmtree(temp_dir, ignore_errors=True)
return redirect(url_for('index'))
else:
flash('Invalid file type selected.', 'error')
# temp_dir_obj.cleanup()
shutil.rmtree(temp_dir, ignore_errors=True)
return redirect(url_for('index'))
if not nifti_for_preprocessing_path or not os.path.exists(nifti_for_preprocessing_path):
flash('Error: Could not find the NIfTI file for processing.', 'error')
# temp_dir_obj.cleanup()
shutil.rmtree(temp_dir, ignore_errors=True)
return redirect(url_for('index'))
# --- Optional Preprocessing Steps ---
nifti_to_predict_path = nifti_for_preprocessing_path
if run_preprocess_flag:
print("--- Running Optional Preprocessing Pipeline ---")
try:
registered_path = os.path.join(temp_dir, "registered.nii.gz")
register_image(nifti_for_preprocessing_path, registered_path)
enhanced_path = os.path.join(temp_dir, "enhanced.nii.gz")
run_enhance_on_file(registered_path, enhanced_path)
skullstrip_output_dir = os.path.join(temp_dir, "skullstripped")
skullstripped_path, _ = run_skull_stripping(enhanced_path, skullstrip_output_dir)
nifti_to_predict_path = skullstripped_path
print("--- Optional Preprocessing Pipeline Complete ---")
except Exception as e:
print(f"Error during optional preprocessing pipeline: {e}")
traceback.print_exc()
flash(f'Error during preprocessing: {e}', 'error')
# temp_dir_obj.cleanup()
shutil.rmtree(temp_dir, ignore_errors=True)
return redirect(url_for('index'))
else:
print("--- Skipping Optional Preprocessing Pipeline ---")
# --- Final Preprocessing for Model & Prediction ---
input_tensor_5d = preprocess_nifti_for_model(nifti_to_predict_path)
print("Performing prediction...")
with torch.no_grad():
output = model(input_tensor_5d)
predicted_age = output.item()
predicted_age_years = predicted_age / 12 # Adjust if needed
print(f"Prediction successful: {predicted_age_years:.2f} years")
# --- Saliency Data Handling (Generate, Save, Get Initial Plot) ---
saliency_output_for_template = None # Initialize
if generate_saliency_flag:
print("--- Generating & Saving Saliency Data ---")
try:
input_3d_for_plot, saliency_3d = generate_saliency(model, input_tensor_5d)
if input_3d_for_plot is not None and saliency_3d is not None:
num_slices = input_3d_for_plot.shape[2]
center_slice_index = num_slices // 2
# Save the numpy arrays for the dynamic route
input_array_path = os.path.join(temp_dir, f"{unique_id}_input.npy")
saliency_array_path = os.path.join(temp_dir, f"{unique_id}_saliency.npy")
np.save(input_array_path, input_3d_for_plot)
np.save(saliency_array_path, saliency_3d)
print(f"Saved input array to {input_array_path}")
print(f"Saved saliency array to {saliency_array_path}")
# Generate ONLY the center slice plots for the initial view
center_slice_plots = create_plot_images_for_slice(input_3d_for_plot, saliency_3d, center_slice_index)
if center_slice_plots:
# Prepare data structure for the template
saliency_output_for_template = {
'center_slice_plots': center_slice_plots,
'num_slices': num_slices,
'center_slice_index': center_slice_index,
'unique_id': unique_id, # Pass the ID for filenames
'temp_dir_path': temp_dir # Pass the full path for lookup
}
print("--- Saliency Data Saved & Initial Plot Generated ---")
else:
print("--- Center Slice Plotting Failed ---")
flash('Failed to generate initial saliency plot.', 'warning')
else:
print("--- Saliency Generation Failed --- ")
flash('Saliency map generation failed.', 'warning')
except Exception as e:
print(f"Error during saliency processing/saving: {e}")
traceback.print_exc()
flash('Could not generate or save saliency maps due to an error.', 'error')
# Render result, passing prediction and potentially the NEW saliency structure
return render_template('index.html',
prediction=f"{predicted_age_years:.2f} years",
saliency_info=saliency_output_for_template) # Pass the new dict
except Exception as e:
flash(f'Error processing file: {e}', 'error')
print(f"Caught Exception during prediction process: {e}")
traceback.print_exc()
# Ensure cleanup happens even if exception occurs mid-process
# temp_dir_obj.cleanup()
if temp_dir and os.path.exists(temp_dir):
shutil.rmtree(temp_dir, ignore_errors=True) # Manual cleanup on general error
return redirect(url_for('index'))
# NOTE: Temporary directory created with mkdtemp is NOT automatically cleaned.
# Need a separate mechanism (e.g., cron job, background task) to remove old directories
# from the system's temporary location (e.g., /tmp) based on age.
# Leaving the directory here so /get_slice can access the files.
# --- New Route for Dynamic Slice Loading ---
@app.route('/get_slice/<unique_id>/<int:slice_index>')
def get_slice(unique_id, slice_index):
# Get the actual temporary directory path from query parameter
temp_dir_path = request.args.get('path')
if not temp_dir_path:
print("Error: 'path' query parameter missing in /get_slice request")
return jsonify({"error": "Required path information missing."}), 400
# Construct paths using the provided directory path and unique ID
input_array_path = os.path.join(temp_dir_path, f"{unique_id}_input.npy")
saliency_array_path = os.path.join(temp_dir_path, f"{unique_id}_saliency.npy")
print(f"Attempting to load slice {slice_index} for ID {unique_id} from actual path: {temp_dir_path}")
try:
# Check using the exact paths constructed above
if not os.path.exists(input_array_path) or not os.path.exists(saliency_array_path):
print(f"Error: .npy files not found for ID {unique_id} at {temp_dir_path}")
return jsonify({"error": "Saliency data not found. It might have expired or failed to save."}), 404
input_3d = np.load(input_array_path)
saliency_3d = np.load(saliency_array_path)
print(f"Loaded arrays for ID {unique_id}. Input shape: {input_3d.shape}, Saliency shape: {saliency_3d.shape}")
# Generate plots for the requested slice using the helper function
slice_plots = create_plot_images_for_slice(input_3d, saliency_3d, slice_index)
if slice_plots:
return jsonify(slice_plots) # Return plot data as JSON
else:
return jsonify({"error": f"Failed to generate plots for slice {slice_index}."}), 500
except Exception as e:
print(f"Error in /get_slice for ID {unique_id}, slice {slice_index}: {e}")
traceback.print_exc()
return jsonify({"error": "An internal error occurred while fetching the slice data."}), 500
if __name__ == '__main__':
# Use '0.0.0.0' to make it accessible outside the container
app.run(host='0.0.0.0', port=5000, debug=False) # Turn off debug for production/docker |