Spaces:
Sleeping
Sleeping
File size: 10,656 Bytes
f5288df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from HD_BET.utils import softmax_helper
class EncodingModule(nn.Module):
def __init__(self, in_channels, out_channels, filter_size=3, dropout_p=0.3, leakiness=1e-2, conv_bias=True,
inst_norm_affine=True, lrelu_inplace=True):
nn.Module.__init__(self)
self.dropout_p = dropout_p
self.lrelu_inplace = lrelu_inplace
self.inst_norm_affine = inst_norm_affine
self.conv_bias = conv_bias
self.leakiness = leakiness
self.bn_1 = nn.InstanceNorm3d(in_channels, affine=self.inst_norm_affine, track_running_stats=True)
self.conv1 = nn.Conv3d(in_channels, out_channels, filter_size, 1, (filter_size - 1) // 2, bias=self.conv_bias)
self.dropout = nn.Dropout3d(dropout_p)
self.bn_2 = nn.InstanceNorm3d(in_channels, affine=self.inst_norm_affine, track_running_stats=True)
self.conv2 = nn.Conv3d(out_channels, out_channels, filter_size, 1, (filter_size - 1) // 2, bias=self.conv_bias)
def forward(self, x):
skip = x
x = F.leaky_relu(self.bn_1(x), negative_slope=self.leakiness, inplace=self.lrelu_inplace)
x = self.conv1(x)
if self.dropout_p is not None and self.dropout_p > 0:
x = self.dropout(x)
x = F.leaky_relu(self.bn_2(x), negative_slope=self.leakiness, inplace=self.lrelu_inplace)
x = self.conv2(x)
x = x + skip
return x
class Upsample(nn.Module):
def __init__(self, size=None, scale_factor=None, mode='nearest', align_corners=True):
super(Upsample, self).__init__()
self.align_corners = align_corners
self.mode = mode
self.scale_factor = scale_factor
self.size = size
def forward(self, x):
return nn.functional.interpolate(x, size=self.size, scale_factor=self.scale_factor, mode=self.mode,
align_corners=self.align_corners)
class LocalizationModule(nn.Module):
def __init__(self, in_channels, out_channels, leakiness=1e-2, conv_bias=True, inst_norm_affine=True,
lrelu_inplace=True):
nn.Module.__init__(self)
self.lrelu_inplace = lrelu_inplace
self.inst_norm_affine = inst_norm_affine
self.conv_bias = conv_bias
self.leakiness = leakiness
self.conv1 = nn.Conv3d(in_channels, in_channels, 3, 1, 1, bias=self.conv_bias)
self.bn_1 = nn.InstanceNorm3d(in_channels, affine=self.inst_norm_affine, track_running_stats=True)
self.conv2 = nn.Conv3d(in_channels, out_channels, 1, 1, 0, bias=self.conv_bias)
self.bn_2 = nn.InstanceNorm3d(out_channels, affine=self.inst_norm_affine, track_running_stats=True)
def forward(self, x):
x = F.leaky_relu(self.bn_1(self.conv1(x)), negative_slope=self.leakiness, inplace=self.lrelu_inplace)
x = F.leaky_relu(self.bn_2(self.conv2(x)), negative_slope=self.leakiness, inplace=self.lrelu_inplace)
return x
class UpsamplingModule(nn.Module):
def __init__(self, in_channels, out_channels, leakiness=1e-2, conv_bias=True, inst_norm_affine=True,
lrelu_inplace=True):
nn.Module.__init__(self)
self.lrelu_inplace = lrelu_inplace
self.inst_norm_affine = inst_norm_affine
self.conv_bias = conv_bias
self.leakiness = leakiness
self.upsample = Upsample(scale_factor=2, mode="trilinear", align_corners=True)
self.upsample_conv = nn.Conv3d(in_channels, out_channels, 3, 1, 1, bias=self.conv_bias)
self.bn = nn.InstanceNorm3d(out_channels, affine=self.inst_norm_affine, track_running_stats=True)
def forward(self, x):
x = F.leaky_relu(self.bn(self.upsample_conv(self.upsample(x))), negative_slope=self.leakiness,
inplace=self.lrelu_inplace)
return x
class DownsamplingModule(nn.Module):
def __init__(self, in_channels, out_channels, leakiness=1e-2, conv_bias=True, inst_norm_affine=True,
lrelu_inplace=True):
nn.Module.__init__(self)
self.lrelu_inplace = lrelu_inplace
self.inst_norm_affine = inst_norm_affine
self.conv_bias = conv_bias
self.leakiness = leakiness
self.bn = nn.InstanceNorm3d(in_channels, affine=self.inst_norm_affine, track_running_stats=True)
self.downsample = nn.Conv3d(in_channels, out_channels, 3, 2, 1, bias=self.conv_bias)
def forward(self, x):
x = F.leaky_relu(self.bn(x), negative_slope=self.leakiness, inplace=self.lrelu_inplace)
b = self.downsample(x)
return x, b
class Network(nn.Module):
def __init__(self, num_classes=4, num_input_channels=4, base_filters=16, dropout_p=0.3,
final_nonlin=softmax_helper, leakiness=1e-2, conv_bias=True, inst_norm_affine=True,
lrelu_inplace=True, do_ds=True):
super(Network, self).__init__()
self.do_ds = do_ds
self.lrelu_inplace = lrelu_inplace
self.inst_norm_affine = inst_norm_affine
self.conv_bias = conv_bias
self.leakiness = leakiness
self.final_nonlin = final_nonlin
self.init_conv = nn.Conv3d(num_input_channels, base_filters, 3, 1, 1, bias=self.conv_bias)
self.context1 = EncodingModule(base_filters, base_filters, 3, dropout_p, leakiness=1e-2, conv_bias=True,
inst_norm_affine=True, lrelu_inplace=True)
self.down1 = DownsamplingModule(base_filters, base_filters * 2, leakiness=1e-2, conv_bias=True,
inst_norm_affine=True, lrelu_inplace=True)
self.context2 = EncodingModule(2 * base_filters, 2 * base_filters, 3, dropout_p, leakiness=1e-2, conv_bias=True,
inst_norm_affine=True, lrelu_inplace=True)
self.down2 = DownsamplingModule(2 * base_filters, base_filters * 4, leakiness=1e-2, conv_bias=True,
inst_norm_affine=True, lrelu_inplace=True)
self.context3 = EncodingModule(4 * base_filters, 4 * base_filters, 3, dropout_p, leakiness=1e-2, conv_bias=True,
inst_norm_affine=True, lrelu_inplace=True)
self.down3 = DownsamplingModule(4 * base_filters, base_filters * 8, leakiness=1e-2, conv_bias=True,
inst_norm_affine=True, lrelu_inplace=True)
self.context4 = EncodingModule(8 * base_filters, 8 * base_filters, 3, dropout_p, leakiness=1e-2, conv_bias=True,
inst_norm_affine=True, lrelu_inplace=True)
self.down4 = DownsamplingModule(8 * base_filters, base_filters * 16, leakiness=1e-2, conv_bias=True,
inst_norm_affine=True, lrelu_inplace=True)
self.context5 = EncodingModule(16 * base_filters, 16 * base_filters, 3, dropout_p, leakiness=1e-2,
conv_bias=True, inst_norm_affine=True, lrelu_inplace=True)
self.bn_after_context5 = nn.InstanceNorm3d(16 * base_filters, affine=self.inst_norm_affine, track_running_stats=True)
self.up1 = UpsamplingModule(16 * base_filters, 8 * base_filters, leakiness=1e-2, conv_bias=True,
inst_norm_affine=True, lrelu_inplace=True)
self.loc1 = LocalizationModule(16 * base_filters, 8 * base_filters, leakiness=1e-2, conv_bias=True,
inst_norm_affine=True, lrelu_inplace=True)
self.up2 = UpsamplingModule(8 * base_filters, 4 * base_filters, leakiness=1e-2, conv_bias=True,
inst_norm_affine=True, lrelu_inplace=True)
self.loc2 = LocalizationModule(8 * base_filters, 4 * base_filters, leakiness=1e-2, conv_bias=True,
inst_norm_affine=True, lrelu_inplace=True)
self.loc2_seg = nn.Conv3d(4 * base_filters, num_classes, 1, 1, 0, bias=False)
self.up3 = UpsamplingModule(4 * base_filters, 2 * base_filters, leakiness=1e-2, conv_bias=True,
inst_norm_affine=True, lrelu_inplace=True)
self.loc3 = LocalizationModule(4 * base_filters, 2 * base_filters, leakiness=1e-2, conv_bias=True,
inst_norm_affine=True, lrelu_inplace=True)
self.loc3_seg = nn.Conv3d(2 * base_filters, num_classes, 1, 1, 0, bias=False)
self.up4 = UpsamplingModule(2 * base_filters, 1 * base_filters, leakiness=1e-2, conv_bias=True,
inst_norm_affine=True, lrelu_inplace=True)
self.end_conv_1 = nn.Conv3d(2 * base_filters, 2 * base_filters, 3, 1, 1, bias=self.conv_bias)
self.end_conv_1_bn = nn.InstanceNorm3d(2 * base_filters, affine=self.inst_norm_affine, track_running_stats=True)
self.end_conv_2 = nn.Conv3d(2 * base_filters, 2 * base_filters, 3, 1, 1, bias=self.conv_bias)
self.end_conv_2_bn = nn.InstanceNorm3d(2 * base_filters, affine=self.inst_norm_affine, track_running_stats=True)
self.seg_layer = nn.Conv3d(2 * base_filters, num_classes, 1, 1, 0, bias=False)
def forward(self, x):
seg_outputs = []
x = self.init_conv(x)
x = self.context1(x)
skip1, x = self.down1(x)
x = self.context2(x)
skip2, x = self.down2(x)
x = self.context3(x)
skip3, x = self.down3(x)
x = self.context4(x)
skip4, x = self.down4(x)
x = self.context5(x)
x = F.leaky_relu(self.bn_after_context5(x), negative_slope=self.leakiness, inplace=self.lrelu_inplace)
x = self.up1(x)
x = torch.cat((skip4, x), dim=1)
x = self.loc1(x)
x = self.up2(x)
x = torch.cat((skip3, x), dim=1)
x = self.loc2(x)
loc2_seg = self.final_nonlin(self.loc2_seg(x))
seg_outputs.append(loc2_seg)
x = self.up3(x)
x = torch.cat((skip2, x), dim=1)
x = self.loc3(x)
loc3_seg = self.final_nonlin(self.loc3_seg(x))
seg_outputs.append(loc3_seg)
x = self.up4(x)
x = torch.cat((skip1, x), dim=1)
x = F.leaky_relu(self.end_conv_1_bn(self.end_conv_1(x)), negative_slope=self.leakiness,
inplace=self.lrelu_inplace)
x = F.leaky_relu(self.end_conv_2_bn(self.end_conv_2(x)), negative_slope=self.leakiness,
inplace=self.lrelu_inplace)
x = self.final_nonlin(self.seg_layer(x))
seg_outputs.append(x)
if self.do_ds:
return seg_outputs[::-1]
else:
return seg_outputs[-1]
|