Spaces:
Runtime error
Runtime error
File size: 8,651 Bytes
f239efc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import numpy as np
import io
import os
import json
import logging
import random
import time
from collections import defaultdict, deque
import datetime
from pathlib import Path
from typing import List, Union
import torch
import torch.distributed as dist
from .distributed import is_dist_avail_and_initialized
logger = logging.getLogger(__name__)
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
def synchronize_between_processes(self):
"""
Warning: does not synchronize the deque!
"""
if not is_dist_avail_and_initialized():
return
t = torch.tensor([self.count, self.total],
dtype=torch.float64, device='cuda')
dist.barrier()
dist.all_reduce(t)
t = t.tolist()
self.count = int(t[0])
self.total = t[1]
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value)
class MetricLogger(object):
def __init__(self, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
if meter.count == 0: # skip empty meter
loss_str.append(
"{}: {}".format(name, "No data")
)
else:
loss_str.append(
"{}: {}".format(name, str(meter))
)
return self.delimiter.join(loss_str)
def global_avg(self):
loss_str = []
for name, meter in self.meters.items():
if meter.count == 0:
loss_str.append(
"{}: {}".format(name, "No data")
)
else:
loss_str.append(
"{}: {:.4f}".format(name, meter.global_avg)
)
return self.delimiter.join(loss_str)
def get_global_avg_dict(self, prefix=""):
"""include a separator (e.g., `/`, or "_") at the end of `prefix`"""
d = {f"{prefix}{k}": m.global_avg if m.count > 0 else 0. for k, m in self.meters.items()}
return d
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterable, log_freq, header=None):
i = 0
if not header:
header = ''
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt='{avg:.4f}')
data_time = SmoothedValue(fmt='{avg:.4f}')
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
log_msg = [
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}'
]
if torch.cuda.is_available():
log_msg.append('max mem: {memory:.0f} res mem: {res_mem:.0f}')
log_msg = self.delimiter.join(log_msg)
MB = 1024.0 * 1024.0
for obj in iterable:
data_time.update(time.time() - end)
yield obj
iter_time.update(time.time() - end)
if i % log_freq == 0 or i == len(iterable) - 1:
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
logger.info(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB,
res_mem=torch.cuda.max_memory_reserved() / MB,
))
else:
logger.info(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time)))
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info('{} Total time: {} ({:.4f} s / it)'.format(
header, total_time_str, total_time / len(iterable)))
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
def compute_acc(logits, label, reduction='mean'):
ret = (torch.argmax(logits, dim=1) == label).float()
if reduction == 'none':
return ret.detach()
elif reduction == 'mean':
return ret.mean().item()
def compute_n_params(model, return_str=True):
tot = 0
for p in model.parameters():
w = 1
for x in p.shape:
w *= x
tot += w
if return_str:
if tot >= 1e6:
return '{:.1f}M'.format(tot / 1e6)
else:
return '{:.1f}K'.format(tot / 1e3)
else:
return tot
def setup_seed(seed):
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
def remove_files_if_exist(file_paths):
for fp in file_paths:
if os.path.isfile(fp):
os.remove(fp)
def save_json(data, filename, save_pretty=False, sort_keys=False):
with open(filename, "w") as f:
if save_pretty:
f.write(json.dumps(data, indent=4, sort_keys=sort_keys))
else:
json.dump(data, f)
def load_json(filename):
with open(filename, "r") as f:
return json.load(f)
def flat_list_of_lists(l):
"""flatten a list of lists [[1,2], [3,4]] to [1,2,3,4]"""
return [item for sublist in l for item in sublist]
def find_files_by_suffix_recursively(root: str, suffix: Union[str, List[str]]):
"""
Args:
root: path to the directory to start search files
suffix: any str as suffix, or can match multiple such strings
when input is List[str].
Example 1, e.g., suffix: `.jpg` or [`.jpg`, `.png`]
Example 2, e.g., use a `*` in the `suffix`: `START*.jpg.`.
"""
if isinstance(suffix, str):
suffix = [suffix, ]
filepaths = flat_list_of_lists(
[list(Path(root).rglob(f"*{e}")) for e in suffix])
return filepaths
def match_key_and_shape(state_dict1, state_dict2):
keys1 = set(state_dict1.keys())
keys2 = set(state_dict2.keys())
print(f"keys1 - keys2: {keys1 - keys2}")
print(f"keys2 - keys1: {keys2 - keys1}")
mismatch = 0
for k in list(keys1):
if state_dict1[k].shape != state_dict2[k].shape:
print(
f"k={k}, state_dict1[k].shape={state_dict1[k].shape}, state_dict2[k].shape={state_dict2[k].shape}")
mismatch += 1
print(f"mismatch {mismatch}")
def merge_dicts(list_dicts):
merged_dict = list_dicts[0].copy()
for i in range(1, len(list_dicts)):
merged_dict.update(list_dicts[i])
return merged_dict
|