File size: 8,651 Bytes
f239efc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import numpy as np
import io
import os
import json
import logging
import random
import time
from collections import defaultdict, deque
import datetime
from pathlib import Path
from typing import List, Union

import torch
import torch.distributed as dist
from .distributed import is_dist_avail_and_initialized


logger = logging.getLogger(__name__)


class SmoothedValue(object):
    """Track a series of values and provide access to smoothed values over a
    window or the global series average.
    """

    def __init__(self, window=20, fmt=None):
        if fmt is None:
            fmt = "{median:.4f} ({global_avg:.4f})"
        self.deque = deque(maxlen=window)
        self.total = 0.0
        self.count = 0
        self.fmt = fmt

    def update(self, value, n=1):
        self.deque.append(value)
        self.count += n
        self.total += value * n

    def synchronize_between_processes(self):
        """
        Warning: does not synchronize the deque!
        """
        if not is_dist_avail_and_initialized():
            return
        t = torch.tensor([self.count, self.total],
                         dtype=torch.float64, device='cuda')
        dist.barrier()
        dist.all_reduce(t)
        t = t.tolist()
        self.count = int(t[0])
        self.total = t[1]

    @property
    def median(self):
        d = torch.tensor(list(self.deque))
        return d.median().item()

    @property
    def avg(self):
        d = torch.tensor(list(self.deque), dtype=torch.float32)
        return d.mean().item()

    @property
    def global_avg(self):
        return self.total / self.count

    @property
    def max(self):
        return max(self.deque)

    @property
    def value(self):
        return self.deque[-1]

    def __str__(self):
        return self.fmt.format(
            median=self.median,
            avg=self.avg,
            global_avg=self.global_avg,
            max=self.max,
            value=self.value)


class MetricLogger(object):
    def __init__(self, delimiter="\t"):
        self.meters = defaultdict(SmoothedValue)
        self.delimiter = delimiter

    def update(self, **kwargs):
        for k, v in kwargs.items():
            if isinstance(v, torch.Tensor):
                v = v.item()
            assert isinstance(v, (float, int))
            self.meters[k].update(v)

    def __getattr__(self, attr):
        if attr in self.meters:
            return self.meters[attr]
        if attr in self.__dict__:
            return self.__dict__[attr]
        raise AttributeError("'{}' object has no attribute '{}'".format(
            type(self).__name__, attr))

    def __str__(self):
        loss_str = []
        for name, meter in self.meters.items():
            if meter.count == 0:  # skip empty meter
                loss_str.append(
                    "{}: {}".format(name, "No data")
                )
            else:
                loss_str.append(
                    "{}: {}".format(name, str(meter))
                )
        return self.delimiter.join(loss_str)

    def global_avg(self):
        loss_str = []
        for name, meter in self.meters.items():
            if meter.count == 0:
                loss_str.append(
                    "{}: {}".format(name, "No data")
                )
            else:
                loss_str.append(
                    "{}: {:.4f}".format(name, meter.global_avg)
                )
        return self.delimiter.join(loss_str)

    def get_global_avg_dict(self, prefix=""):
        """include a separator (e.g., `/`, or "_") at the end of `prefix`"""
        d = {f"{prefix}{k}": m.global_avg if m.count > 0 else 0. for k, m in self.meters.items()}
        return d

    def synchronize_between_processes(self):
        for meter in self.meters.values():
            meter.synchronize_between_processes()

    def add_meter(self, name, meter):
        self.meters[name] = meter

    def log_every(self, iterable, log_freq, header=None):
        i = 0
        if not header:
            header = ''
        start_time = time.time()
        end = time.time()
        iter_time = SmoothedValue(fmt='{avg:.4f}')
        data_time = SmoothedValue(fmt='{avg:.4f}')
        space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
        log_msg = [
            header,
            '[{0' + space_fmt + '}/{1}]',
            'eta: {eta}',
            '{meters}',
            'time: {time}',
            'data: {data}'
        ]
        if torch.cuda.is_available():
            log_msg.append('max mem: {memory:.0f} res mem: {res_mem:.0f}')
        log_msg = self.delimiter.join(log_msg)
        MB = 1024.0 * 1024.0
        for obj in iterable:
            data_time.update(time.time() - end)
            yield obj
            iter_time.update(time.time() - end)
            if i % log_freq == 0 or i == len(iterable) - 1:
                eta_seconds = iter_time.global_avg * (len(iterable) - i)
                eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
                if torch.cuda.is_available():
                    logger.info(log_msg.format(
                        i, len(iterable), eta=eta_string,
                        meters=str(self),
                        time=str(iter_time), data=str(data_time),
                        memory=torch.cuda.max_memory_allocated() / MB,
                        res_mem=torch.cuda.max_memory_reserved() / MB,
                    ))
                else:
                    logger.info(log_msg.format(
                        i, len(iterable), eta=eta_string,
                        meters=str(self),
                        time=str(iter_time), data=str(data_time)))
            i += 1
            end = time.time()
        total_time = time.time() - start_time
        total_time_str = str(datetime.timedelta(seconds=int(total_time)))
        logger.info('{} Total time: {} ({:.4f} s / it)'.format(
            header, total_time_str, total_time / len(iterable)))


class AttrDict(dict):
    def __init__(self, *args, **kwargs):
        super(AttrDict, self).__init__(*args, **kwargs)
        self.__dict__ = self


def compute_acc(logits, label, reduction='mean'):
    ret = (torch.argmax(logits, dim=1) == label).float()
    if reduction == 'none':
        return ret.detach()
    elif reduction == 'mean':
        return ret.mean().item()


def compute_n_params(model, return_str=True):
    tot = 0
    for p in model.parameters():
        w = 1
        for x in p.shape:
            w *= x
        tot += w
    if return_str:
        if tot >= 1e6:
            return '{:.1f}M'.format(tot / 1e6)
        else:
            return '{:.1f}K'.format(tot / 1e3)
    else:
        return tot


def setup_seed(seed):
    torch.manual_seed(seed)
    np.random.seed(seed)
    random.seed(seed)


def remove_files_if_exist(file_paths):
    for fp in file_paths:
        if os.path.isfile(fp):
            os.remove(fp)


def save_json(data, filename, save_pretty=False, sort_keys=False):
    with open(filename, "w") as f:
        if save_pretty:
            f.write(json.dumps(data, indent=4, sort_keys=sort_keys))
        else:
            json.dump(data, f)


def load_json(filename):
    with open(filename, "r") as f:
        return json.load(f)


def flat_list_of_lists(l):
    """flatten a list of lists [[1,2], [3,4]] to [1,2,3,4]"""
    return [item for sublist in l for item in sublist]


def find_files_by_suffix_recursively(root: str, suffix: Union[str, List[str]]):
    """
    Args:
        root: path to the directory to start search files
        suffix: any str as suffix, or can match multiple such strings
            when input is List[str]. 
            Example 1, e.g., suffix: `.jpg` or [`.jpg`, `.png`]
            Example 2, e.g., use a `*` in the `suffix`: `START*.jpg.`.
    """
    if isinstance(suffix, str):
        suffix = [suffix, ]
    filepaths = flat_list_of_lists(
        [list(Path(root).rglob(f"*{e}")) for e in suffix])
    return filepaths


def match_key_and_shape(state_dict1, state_dict2):
    keys1 = set(state_dict1.keys())
    keys2 = set(state_dict2.keys())
    print(f"keys1 - keys2: {keys1 - keys2}")
    print(f"keys2 - keys1: {keys2 - keys1}")

    mismatch = 0
    for k in list(keys1):
        if state_dict1[k].shape != state_dict2[k].shape:
            print(
                f"k={k}, state_dict1[k].shape={state_dict1[k].shape}, state_dict2[k].shape={state_dict2[k].shape}")
            mismatch += 1
    print(f"mismatch {mismatch}")


def merge_dicts(list_dicts):
    merged_dict = list_dicts[0].copy()
    for i in range(1, len(list_dicts)):
        merged_dict.update(list_dicts[i])
    return merged_dict