Spaces:
Runtime error
Runtime error
File size: 14,544 Bytes
08720f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import os
from PIL import Image
import random
import shutil
import datetime
import torchvision.transforms.functional as f
import torch
from typing import Optional, Tuple
from threading import Lock
from langchain import ConversationChain
from chat_anything.tts_talker.tts_edge import TTSTalker
from chat_anything.sad_talker.sad_talker import SadTalker
from chat_anything.chatbot.chat import load_chain
from chat_anything.chatbot.select import model_selection_chain
from chat_anything.chatbot.voice_select import voice_selection_chain
import gradio as gr
TALKING_HEAD_WIDTH = "350"
sadtalker_checkpoint_path = "MODELS/SadTalker"
config_path = "chat_anything/sad_talker/config"
class ChatWrapper:
def __init__(self):
self.lock = Lock()
self.sad_talker = SadTalker(
sadtalker_checkpoint_path, config_path, lazy_load=True)
def __call__(
self,
api_key: str,
inp: str,
history: Optional[Tuple[str, str]],
chain: Optional[ConversationChain],
speak_text: bool, talking_head: bool,
uid: str,
talker : None,
fullbody : str,
):
"""Execute the chat functionality."""
self.lock.acquire()
if chain is None:
history.append((inp, "Please register with your API key first!"))
else:
try:
print("\n==== date/time: " + str(datetime.datetime.now()) + " ====")
print("inp: " + inp)
print("speak_text: ", speak_text)
print("talking_head: ", talking_head)
history = history or []
# If chain is None, that is because no API key was provided.
output = "Please paste your OpenAI key from openai.com to use this app. " + \
str(datetime.datetime.now())
output = chain.predict(input=inp).strip()
output = output.replace("\n", "\n\n")
text_to_display = output
# #预定义一个talker
# talker = MaleEn()
history.append((inp, text_to_display))
html_video, temp_file, html_audio, temp_aud_file = None, None, None, None
if speak_text:
if talking_head:
html_video, temp_file = self.do_html_video_speak(
talker, output, fullbody, uid)
else:
html_audio, temp_aud_file = self.do_html_audio_speak(
talker, output,uid)
else:
if talking_head:
temp_file = os.path.join('tmp', uid, 'videos')
html_video = create_html_video(
temp_file, TALKING_HEAD_WIDTH)
else:
pass
except Exception as e:
raise e
finally:
self.lock.release()
return history, history, html_video, temp_file, html_audio, temp_aud_file, ""
def do_html_audio_speak(self,talker, words_to_speak, uid):
audio_path = os.path.join('tmp', uid, 'audios')
print('uid:', uid, ":", words_to_speak)
audo_file_path = talker.test(text=words_to_speak, audio_path=audio_path)
html_audio = '<pre>no audio</pre>'
try:
temp_aud_file = gr.File(audo_file_path)
print("audio-----------------------------------------------------success")
temp_aud_file_url = "/file=" + temp_aud_file.value['name']
html_audio = f'<audio autoplay><source src={temp_aud_file_url} type="audio/mp3"></audio>'
except IOError as error:
# Could not write to file, exit gracefully
print(error)
return None, None
return html_audio, audo_file_path
def do_html_video_speak(self,talker,words_to_speak,fullbody, uid):
if fullbody:
# preprocess='somthing'
preprocess='full'
else:
preprocess='crop'
print("success")
video_path = os.path.join('tmp', uid, 'videos')
if not os.path.exists(video_path):
os.makedirs(video_path)
video_file_path = os.path.join(video_path, 'tempfile.mp4')
_, audio_path = self.do_html_audio_speak(
talker,words_to_speak,uid)
face_file_path = os.path.join('tmp', uid, 'images', 'test.jpg')
video = self.sad_talker.test(face_file_path, audio_path,preprocess, uid=uid) #video_file_path
print("---------------------------------------------------------success")
print(f"moving {video} -> {video_file_path}")
shutil.move(video, video_file_path)
return video_file_path, video_file_path
def generate_init_face_video(self,class_concept="clock", llm=None,uid=None,fullbody=None, ref_image=None, seed=None):
"""
"""
print('generate concept of', class_concept)
print("=================================================")
print('fullbody:', fullbody)
print('uid:', uid)
print("==================================================")
chain, memory, personality_text = load_chain(llm, class_concept)
model_conf, selected_model = model_selection_chain(llm, class_concept, conf_file='resources/models.yaml') # use class concept to choose a generating model, otherwise crack down
# model_conf, selected_model = model_selection_chain(llm, personality_text, conf_file='resources/models_personality.yaml') # use class concept to choose a generating model, otherwise crack down
voice_conf, selected_voice = model_selection_chain(llm, personality_text, conf_file='resources/voices_edge.yaml')
# added for safe face generation
print('generate concept of', class_concept)
augment_word_list = ["Female ", "female ", "beautiful ", "small ", "cute "]
first_sentence = "Hello, how are you doing today?"
voice_conf, selected_voice = model_selection_chain(llm, personality_text, conf_file='resources/voices_edge.yaml')
talker = TTSTalker(selected_voice=selected_voice, gender=voice_conf['gender'], language=voice_conf['language'])
model_conf, selected_model = model_selection_chain(llm, class_concept, conf_file='resources/models.yaml') # use class concept to choose a generating model, otherwise crack down
retry_cnt = 4
if ref_image is None:
face_files = os.listdir(FACE_DIR)
face_img_path = os.path.join(FACE_DIR, random.choice(face_files))
ref_image = Image.open(face_img_path)
print('loading face generating model')
anything_facemaker = load_face_generator(
model_dir=model_conf['model_dir'],
lora_path=model_conf['lora_path'],
prompt_template=model_conf['prompt_template'],
negative_prompt=model_conf['negative_prompt'],
)
retry_cnt = 0
has_face = anything_facemaker.has_face(ref_image)
init_strength = 1.0 if has_face else 0.85
strength_retry_step = -0.04 if has_face else 0.04
while retry_cnt < 8:
try:
generate_face_image(
anything_facemaker,
class_concept,
ref_image,
uid=uid,
strength=init_strength if (retry_cnt==0 and has_face) else init_strength + retry_cnt * strength_retry_step,
controlnet_conditioning_scale=0.5 if retry_cnt == 8 else 0.3,
seed=seed,
)
self.do_html_video_speak(talker, first_sentence, fullbody, uid=uid)
video_file_path = os.path.join('tmp', uid, 'videos/tempfile.mp4')
htm_video = create_html_video(
video_file_path, TALKING_HEAD_WIDTH)
break
except Exception as e:
retry_cnt += 1
class_concept = random.choice(augment_word_list) + class_concept
print(e)
# end of repeat block
return chain, memory, htm_video, talker
def update_talking_head(self, widget, uid, state):
print("success----------------")
if widget:
state = widget
temp_file = os.path.join('tmp', uid, 'videos')
video_html_talking_head = create_html_video(
temp_file, TALKING_HEAD_WIDTH)
return state, video_html_talking_head
else:
return None, "<pre></pre>"
def reset_memory(history, memory):
memory.clear()
history = []
return history, history, memory
def create_html_video(file_name, width):
return file_name
def create_html_audio(file_name):
if os.path.exists(file_name):
tmp_audio_file = gr.File(file_name, visible=False)
tmp_aud_file_url = "/file=" + tmp_audio_file.value['name']
html_audio = f'<audio><source src={tmp_aud_file_url} type="audio/mp3"></audio>'
del tmp_aud_file_url
else:
html_audio = f''
return html_audio
def update_foo(widget, state):
if widget:
state = widget
return state
# Pertains to question answering functionality
def update_use_embeddings(widget, state):
if widget:
state = widget
return state
# This is the code for image generating.
def load_face_generator(model_dir, lora_path, prompt_template, negative_prompt):
from chat_anything.face_generator.long_prompt_control_generator import LongPromptControlGenerator
# # using local
model_zoo = "MODELS"
face_control_dir = os.path.join(
model_zoo, "Face-Landmark-ControlNet", "models_for_diffusers")
face_detect_path = os.path.join(
model_zoo, "SadTalker", "shape_predictor_68_face_landmarks.dat")
# use remote, hugginface auto-download.
# use your model path, has to be a model derived from stable diffusion v1-5
anything_facemaker = LongPromptControlGenerator(
model_dir=model_dir,
lora_path=lora_path,
prompt_template=prompt_template,
negative_prompt=negative_prompt,
face_control_dir=face_control_dir,
face_detect_path=face_detect_path,
)
anything_facemaker.load_model(safety_checker=None)
return anything_facemaker
FACE_DIR="resources/images/faces"
def generate_face_image(
anything_facemaker,
class_concept,
face_img_pil,
uid=None,
controlnet_conditioning_scale=1.0,
strength=0.95,
seed=42,
):
face_img_pil = f.center_crop(
f.resize(face_img_pil, 512), 512).convert('RGB')
prompt = anything_facemaker.prompt_template.format(class_concept)
# # There are four ways to generate a image by now.
# pure_generate = anything_facemaker.generate(prompt=prompt, image=face_img_pil, do_inversion=False)
# inversion = anything_facemaker.generate(prompt=prompt, image=face_img_pil, strength=strength, do_inversion=True)
print('USING SEED:', seed)
generator = torch.Generator(device=anything_facemaker.face_control_pipe.device)
generator.manual_seed(seed)
if strength is None:
pure_control = anything_facemaker.face_control_generate(prompt=prompt, face_img_pil=face_img_pil, do_inversion=False,
controlnet_conditioning_scale=controlnet_conditioning_scale, generator=generator)
init_face_pil = pure_control
else:
control_inversion = anything_facemaker.face_control_generate(prompt=prompt, face_img_pil=face_img_pil, do_inversion=True,
strength=strength,
controlnet_conditioning_scale=controlnet_conditioning_scale, generator=generator)
init_face_pil = control_inversion
print('succeeded generating face image')
face_path = os.path.join('tmp', uid, 'images')
if not os.path.exists(face_path):
os.makedirs(face_path)
# TODO: reproduce the images for return, shouldn't use the filesystem
face_file_path = os.path.join(face_path, 'test.jpg')
init_face_pil.save(face_file_path)
return init_face_pil
|