File size: 14,544 Bytes
08720f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301

import os
from PIL import Image
import random
import shutil
import datetime
import torchvision.transforms.functional as f
import torch

from typing import Optional, Tuple
from threading import Lock
from langchain import ConversationChain

from chat_anything.tts_talker.tts_edge import TTSTalker
from chat_anything.sad_talker.sad_talker import SadTalker
from chat_anything.chatbot.chat import load_chain
from chat_anything.chatbot.select import model_selection_chain
from chat_anything.chatbot.voice_select import voice_selection_chain
import gradio as gr


TALKING_HEAD_WIDTH = "350"
sadtalker_checkpoint_path = "MODELS/SadTalker"
config_path = "chat_anything/sad_talker/config"

class ChatWrapper:
    def __init__(self):
        self.lock = Lock()
        self.sad_talker = SadTalker(
            sadtalker_checkpoint_path, config_path, lazy_load=True)

    def __call__(
            self,
            api_key: str,
            inp: str,
            history: Optional[Tuple[str, str]],
            chain: Optional[ConversationChain],
            speak_text: bool, talking_head: bool,
            uid: str,
            talker : None,
            fullbody : str,
    ):
        """Execute the chat functionality."""
        self.lock.acquire()
        if chain is None:
            history.append((inp, "Please register with your API key first!"))
        else:
            try:
                print("\n==== date/time: " + str(datetime.datetime.now()) + " ====")
                print("inp: " + inp)
                print("speak_text: ", speak_text)
                print("talking_head: ", talking_head)
                history = history or []
                # If chain is None, that is because no API key was provided.
                output = "Please paste your OpenAI key from openai.com to use this app. " + \
                    str(datetime.datetime.now())

                output = chain.predict(input=inp).strip()
                output = output.replace("\n", "\n\n")

                text_to_display = output

                # #预定义一个talker
                # talker = MaleEn()
                history.append((inp, text_to_display))

                html_video, temp_file, html_audio, temp_aud_file = None, None, None, None
                if speak_text:
                    if talking_head:
                        html_video, temp_file = self.do_html_video_speak(
                         talker, output, fullbody, uid)
                    else:
                        html_audio, temp_aud_file = self.do_html_audio_speak(
                         talker,  output,uid)
                else:
                    if talking_head:
                        temp_file = os.path.join('tmp', uid, 'videos')
                        html_video = create_html_video(
                            temp_file, TALKING_HEAD_WIDTH)
                    else:
                        pass

            except Exception as e:
                raise e
            finally:
                self.lock.release()
        return history, history, html_video, temp_file, html_audio, temp_aud_file, ""
    

    def do_html_audio_speak(self,talker, words_to_speak, uid):
        audio_path = os.path.join('tmp', uid, 'audios')
        print('uid:', uid, ":", words_to_speak)
        audo_file_path = talker.test(text=words_to_speak, audio_path=audio_path)
        html_audio = '<pre>no audio</pre>'
        try:
            temp_aud_file = gr.File(audo_file_path)
            print("audio-----------------------------------------------------success")
            temp_aud_file_url = "/file=" + temp_aud_file.value['name']
            html_audio = f'<audio autoplay><source src={temp_aud_file_url} type="audio/mp3"></audio>'
        except IOError as error:
            # Could not write to file, exit gracefully
            print(error)
            return None, None

        return html_audio, audo_file_path

    def do_html_video_speak(self,talker,words_to_speak,fullbody, uid):
        if fullbody:
            # preprocess='somthing'
            preprocess='full'
        else:
            preprocess='crop'
        print("success")
        video_path = os.path.join('tmp', uid, 'videos')
        if not os.path.exists(video_path):
            os.makedirs(video_path)
        video_file_path = os.path.join(video_path, 'tempfile.mp4')
        _, audio_path = self.do_html_audio_speak(
            talker,words_to_speak,uid)
        face_file_path = os.path.join('tmp', uid, 'images', 'test.jpg')
        
        video = self.sad_talker.test(face_file_path, audio_path,preprocess, uid=uid) #video_file_path
        print("---------------------------------------------------------success")
        print(f"moving {video} -> {video_file_path}")
        shutil.move(video, video_file_path)

        return video_file_path, video_file_path


    def generate_init_face_video(self,class_concept="clock", llm=None,uid=None,fullbody=None, ref_image=None, seed=None):
        """
        """
        print('generate concept of', class_concept)
        print("=================================================")
        print('fullbody:', fullbody)
        print('uid:', uid)
        print("==================================================")
        chain, memory, personality_text = load_chain(llm, class_concept)
        model_conf, selected_model = model_selection_chain(llm, class_concept, conf_file='resources/models.yaml') # use class concept to choose a generating model, otherwise crack down
        # model_conf, selected_model = model_selection_chain(llm, personality_text, conf_file='resources/models_personality.yaml') # use class concept to choose a generating model, otherwise crack down
        voice_conf, selected_voice = model_selection_chain(llm, personality_text, conf_file='resources/voices_edge.yaml')

        # added for safe face generation
        print('generate concept of', class_concept)
        augment_word_list = ["Female ", "female ", "beautiful ", "small ", "cute "]
        first_sentence = "Hello, how are you doing today?"
        voice_conf, selected_voice = model_selection_chain(llm, personality_text, conf_file='resources/voices_edge.yaml')
        talker = TTSTalker(selected_voice=selected_voice, gender=voice_conf['gender'], language=voice_conf['language'])
        model_conf, selected_model = model_selection_chain(llm, class_concept, conf_file='resources/models.yaml') # use class concept to choose a generating model, otherwise crack down
        retry_cnt = 4
        if ref_image is None:
            face_files = os.listdir(FACE_DIR)
            face_img_path = os.path.join(FACE_DIR, random.choice(face_files))
            ref_image = Image.open(face_img_path)

        print('loading face generating model')
        anything_facemaker = load_face_generator(
            model_dir=model_conf['model_dir'],                                                                                           
            lora_path=model_conf['lora_path'],                                                                                           
            prompt_template=model_conf['prompt_template'],                                                                               
            negative_prompt=model_conf['negative_prompt'],    
        )
        retry_cnt = 0                                                                                                                                  
        has_face = anything_facemaker.has_face(ref_image)
        init_strength = 1.0 if has_face else 0.85                                                                                       
        strength_retry_step = -0.04 if has_face else 0.04
        while retry_cnt < 8:                                                                                                
            try:                                                                                                                                 
                generate_face_image(                                                                                                             
                    anything_facemaker,
                    class_concept,
                    ref_image,
                    uid=uid,                                                                                                  
                    strength=init_strength if (retry_cnt==0 and has_face) else init_strength + retry_cnt * strength_retry_step,                                          
                    controlnet_conditioning_scale=0.5 if retry_cnt == 8 else 0.3,
                    seed=seed,                                                                                                                              
                )                                                                                                                                
                self.do_html_video_speak(talker, first_sentence, fullbody, uid=uid)                                                                   
                video_file_path = os.path.join('tmp', uid, 'videos/tempfile.mp4')                                                                
                htm_video = create_html_video(                                                                                                   
                    video_file_path, TALKING_HEAD_WIDTH)                                                                                                                                                                                                     
                break                                                                                                                            
            except Exception as e:                                                                                                               
                retry_cnt += 1                                                                                                                
                class_concept = random.choice(augment_word_list) + class_concept                                                                                                                                                                            
                print(e)         
        # end of repeat block       

        return chain, memory, htm_video, talker


    def update_talking_head(self, widget, uid, state):
        print("success----------------")
        if widget:
            state = widget
            temp_file = os.path.join('tmp', uid, 'videos')
            video_html_talking_head = create_html_video(
                temp_file, TALKING_HEAD_WIDTH)
            return state, video_html_talking_head
        else:
            return None, "<pre></pre>"


def reset_memory(history, memory):
    memory.clear()
    history = []
    return history, history, memory
            

def create_html_video(file_name, width):
    return file_name


def create_html_audio(file_name):
    if os.path.exists(file_name):
        tmp_audio_file = gr.File(file_name, visible=False)
        tmp_aud_file_url = "/file=" + tmp_audio_file.value['name']
        html_audio = f'<audio><source src={tmp_aud_file_url} type="audio/mp3"></audio>'
        del tmp_aud_file_url
    else:
       html_audio = f'' 
    
    return html_audio


def update_foo(widget, state):
    if widget:
        state = widget
        return state


# Pertains to question answering functionality
def update_use_embeddings(widget, state):
    if widget:
        state = widget
        return state

# This is the code for image generating.


def load_face_generator(model_dir, lora_path, prompt_template, negative_prompt):
    from chat_anything.face_generator.long_prompt_control_generator import LongPromptControlGenerator
    # # using local
    model_zoo = "MODELS"
    face_control_dir = os.path.join(
        model_zoo, "Face-Landmark-ControlNet", "models_for_diffusers")
    face_detect_path = os.path.join(
        model_zoo, "SadTalker", "shape_predictor_68_face_landmarks.dat")
    # use remote, hugginface auto-download.
    # use your model path, has to be a model derived from stable diffusion v1-5
    anything_facemaker = LongPromptControlGenerator(
        model_dir=model_dir,
        lora_path=lora_path,
        prompt_template=prompt_template,
        negative_prompt=negative_prompt,
        face_control_dir=face_control_dir,
        face_detect_path=face_detect_path,
    )
    anything_facemaker.load_model(safety_checker=None)
    return anything_facemaker



FACE_DIR="resources/images/faces"
def generate_face_image(
        anything_facemaker,
        class_concept, 
        face_img_pil,
        uid=None,
        controlnet_conditioning_scale=1.0,
        strength=0.95,
        seed=42,
    ):
    face_img_pil = f.center_crop(
        f.resize(face_img_pil, 512), 512).convert('RGB')
    prompt = anything_facemaker.prompt_template.format(class_concept)
    # # There are four ways to generate a image by now.
    # pure_generate = anything_facemaker.generate(prompt=prompt, image=face_img_pil, do_inversion=False)
    # inversion = anything_facemaker.generate(prompt=prompt, image=face_img_pil, strength=strength, do_inversion=True)

    print('USING SEED:', seed)
    generator = torch.Generator(device=anything_facemaker.face_control_pipe.device)
    generator.manual_seed(seed)
    if strength is None:
        pure_control = anything_facemaker.face_control_generate(prompt=prompt, face_img_pil=face_img_pil, do_inversion=False,
                                                                 controlnet_conditioning_scale=controlnet_conditioning_scale, generator=generator)
        init_face_pil = pure_control
    else:
        control_inversion = anything_facemaker.face_control_generate(prompt=prompt, face_img_pil=face_img_pil, do_inversion=True, 
                                                                 strength=strength,
                                                                 controlnet_conditioning_scale=controlnet_conditioning_scale, generator=generator)
        init_face_pil = control_inversion
    print('succeeded generating face image')
    face_path = os.path.join('tmp', uid, 'images')
    if not os.path.exists(face_path):
        os.makedirs(face_path)
    # TODO: reproduce the images for return, shouldn't use the filesystem
    face_file_path = os.path.join(face_path, 'test.jpg')
    init_face_pil.save(face_file_path)
    return init_face_pil