Spaces:
Configuration error
Configuration error
File size: 10,039 Bytes
89c5d90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
from __future__ import absolute_import, division, print_function
import time, os
import numpy as np
from os.path import join
import cv2 as cv
from model import *
from utls import image_normalization,visualize_result, tensor2image, cv_imshow,h5_writer
from dataset_manager import DataLoader
BUFFER_SIZE = 448
# tf.set_random_seed(1)
class run_DexiNed():
def __init__(self, args):
self.model_state= args.model_state
self.args = args
self.img_width=args.image_width
self.img_height = args.image_height
self.epochs = args.max_epochs
self.bs = args.batch_size
def train(self):
# Validation and Train dataset generation
train_data = DataLoader(data_name=self.args.data4train, arg=self.args)
n_train =train_data.indices.size #data_cache["n_files"]
val_data = DataLoader(data_name=self.args.data4train,
arg=self.args, is_val=True)
val_idcs = np.arange(val_data.indices.size)
# Summary and checkpoint manager
model_dir =self.args.model_name+'2'+self.args.data4train
summary_dir = os.path.join('logs',model_dir)
train_log_dir=os.path.join(summary_dir,'train')
val_log_dir =os.path.join(summary_dir,'test')
checkpoint_dir = os.path.join(self.args.checkpoint_dir,model_dir)
epoch_ckpt_dir = checkpoint_dir + 'epochs'
os.makedirs(epoch_ckpt_dir, exist_ok=True)
os.makedirs(train_log_dir,exist_ok=True)
os.makedirs(val_log_dir,exist_ok=True)
os.makedirs(checkpoint_dir, exist_ok=True)
train_writer = tf.summary.create_file_writer(train_log_dir)
val_writer = tf.summary.create_file_writer(val_log_dir)
my_model = DexiNed(rgb_mean=self.args.rgbn_mean)#rgb_mean=self.args.rgbn_mean
# accuracy = metrics.SparseCategoricalAccuracy()
accuracy = metrics.BinaryAccuracy()
accuracy_val = metrics.BinaryAccuracy()
loss_bc = losses.BinaryCrossentropy()
optimizer = optimizers.Adam(
learning_rate=self.args.lr, beta_1=self.args.beta1)
iter = 0
imgs_res_folder = os.path.join(self.args.output_dir, "current_training")
os.makedirs(imgs_res_folder, exist_ok=True)
global_loss = 1000.
t_loss = []
ckpt_save_mode = "h5"
tmp_lr = self.args.lr
for epoch in range(self.args.max_epochs):
# training
t_loss = []
# if epoch in self.args.adjust_lr:
tmp_lr=tmp_lr*0.1
optimizer.lr.assign(tmp_lr)
for step, (x, y) in enumerate(train_data):
with tf.GradientTape() as tape:
pred = my_model(x, training=True)
preds, loss = pre_process_binary_cross_entropy(
loss_bc, pred, y, self.args, use_tf_loss=False)
accuracy.update_state(y_true=y, y_pred=preds[-1])
gradients = tape.gradient(loss, my_model.trainable_variables)
optimizer.apply_gradients(zip(gradients, my_model.trainable_variables))
# logging the current accuracy value so far.
t_loss.append(loss.numpy())
if step % 10 == 0:
print("Epoch:", epoch, "Step:", step, "Loss: %.4f" % loss.numpy(),
"Accuracy: %.4f" % accuracy.result(), time.ctime())
if step % 10 == 0:
# visualize preds
img_test = 'Epoch: {0} Sample {1}/{2} Loss: {3}' \
.format(epoch, step, n_train // self.args.batch_size, loss.numpy())
vis_imgs = visualize_result(
x=x[2], y=y[2], p=preds, img_title=img_test)
cv.imwrite(os.path.join(imgs_res_folder, 'results.png'), vis_imgs)
if step % 20 == 0 and loss < global_loss: # 500
if epoch==0 and step==0:
tmp_loss = np.array(t_loss)
with train_writer.as_default():
tf.summary.scalar('loss', tmp_loss.mean(), step=epoch)
tf.summary.scalar('accuracy', accuracy.result(), step=epoch)
save_ckpt_path = os.path.join(checkpoint_dir, "DexiNedL_model.h5")
Model.save_weights(my_model, save_ckpt_path, save_format='h5')
global_loss = loss
print("Model saved in: ", save_ckpt_path, "Current loss:", global_loss.numpy())
iter += 1 # global iteration
t_loss = np.array(t_loss)
# train summary
if epoch!=0:
with train_writer.as_default():
tf.summary.scalar('loss', t_loss.mean(), step=epoch)
tf.summary.scalar('accuracy', accuracy.result(), step=epoch)
Model.save_weights(my_model, os.path.join(epoch_ckpt_dir, "DexiNed{}_model.h5".format(str(epoch))),
save_format=ckpt_save_mode)
print("Epoch:", epoch, "Model saved in Loss: ", t_loss.mean())
# validation
t_val_loss = []
for i, (x_val, y_val) in enumerate(val_data):
pred_val = my_model(x_val)
v_logits, V_loss = pre_process_binary_cross_entropy(
loss_bc, pred_val, y_val, self.args, use_tf_loss=False)
accuracy_val.update_state(y_true=y_val, y_pred=v_logits[-1])
t_val_loss.append(V_loss.numpy())
if i == 7:
break
val_acc = accuracy_val.result()
t_val_loss = np.array(t_val_loss)
print("Epoch(validation):", epoch, "Val loss: ", t_val_loss.mean(),
"Accuracy: ", val_acc.numpy())
# validation summary
with val_writer.as_default():
tf.summary.scalar('loss', t_val_loss.mean(), step=epoch)
tf.summary.scalar('accuracy', val_acc.numpy(), step=epoch)
# Reset metrics every epoch
accuracy.reset_states()
accuracy_val.reset_states()
my_model.summary()
def test(self):
# Test dataset generation
test_data = DataLoader(data_name=self.args.data4test, arg=self.args)
n_test = test_data.indices.size # data_cache["n_files"]
optimizer = tf.keras.optimizers.Adam(
learning_rate=self.args.lr, beta_1=self.args.beta1)
my_model = DexiNed(rgb_mean=self.args.rgbn_mean)
input_shape = test_data.input_shape
my_model.build(input_shape=input_shape) # rgb_mean=self.args.rgbn_mean
checkpoit_dir = os.path.join(self.args.checkpoint_dir,
self.args.model_name + "2" + self.args.data4train)
my_model.load_weights(os.path.join(checkpoit_dir, self.args.checkpoint))
result_dir = os.path.join(
self.args.output_dir,
self.args.model_name + '-' + self.args.data4train + "2" + self.args.data4test)
os.makedirs(result_dir, exist_ok=True)
if self.args.scale is not None:
scl = self.args.scale
save_dir = ['fuse_'+str(scl), 'avrg_'+str(scl), 'h5_'+str(scl)]
else:
save_dir = ['fuse', 'avrg', 'h5']
save_dirs = []
for tmp_dir in save_dir:
os.makedirs(os.path.join(result_dir, tmp_dir), exist_ok=True)
save_dirs.append(os.path.join(result_dir, tmp_dir))
total_time = []
data_names = test_data.imgs_name
data_shape = test_data.imgs_shape
k = 0
for step, (x, y) in enumerate(test_data):
start_time = time.time()
preds = my_model(x, training=False)
tmp_time = time.time() - start_time
total_time.append(tmp_time)
preds = [tf.sigmoid(i).numpy() for i in preds]
all_preds = np.array(preds)
for i in range(all_preds.shape[1]):
tmp_name = data_names[k]
tmp_name, _ = os.path.splitext(tmp_name)
tmp_shape = data_shape[k]
tmp_preds = all_preds[:, i, ...]
tmp_av = np.expand_dims(tmp_preds.mean(axis=0), axis=0)
tmp_preds = np.concatenate((tmp_preds, tmp_av), axis=0)
res_preds = []
for j in range(tmp_preds.shape[0]):
tmp_pred = tmp_preds[j, ...]
tmp_pred[tmp_pred < 0.0] = 0.0
tmp_pred = cv.bitwise_not(np.uint8(image_normalization(tmp_pred)))
h, w = tmp_pred.shape[:2]
if h != tmp_shape[0] or w != tmp_shape[1]:
tmp_pred = cv.resize(tmp_pred, (tmp_shape[1], tmp_shape[0]))
res_preds.append(tmp_pred)
n_save =len(tmp_preds)-2
for idx in range(len(save_dirs) - 1):
s_dir = save_dirs[idx]
tmp = res_preds[n_save + idx]
cv.imwrite(join(s_dir, tmp_name + '.png'), tmp)
h5_writer(path=join(save_dirs[-1], tmp_name + '.h5'),
vars=np.squeeze(res_preds))
print("saved:", join(save_dirs[-1], tmp_name + '.h5'), tmp_preds.shape)
k += 1
# tmp_name = data_names[step][:-3]+"png"
# tmp_shape = data_shape[step]
# tmp_path = os.path.join(result_dir,tmp_name)
# tensor2image(preds[-1].numpy(), img_path =tmp_path,img_shape=tmp_shape)
total_time = np.array(total_time)
print('-------------------------------------------------')
print("End testing in: ", self.args.data4test)
print("Batch size: ", self.args.test_bs)
print("Time average per image: ", total_time.mean(), "secs")
print("Total time: ", total_time.sum(), "secs")
print('-------------------------------------------------')
|