File size: 15,392 Bytes
028951c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a43216
028951c
 
 
 
6a43216
028951c
 
 
 
 
6a43216
028951c
 
 
 
6a43216
028951c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a43216
028951c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a43216
028951c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
import dataclasses
import enum
import functools
import json
import os
import re
import types
from typing import Callable

import einops
import imageio
import numpy as np
import torch.utils.data
import torchvision
import tqdm

from config import CONFIG
from utils import load_pickle_or_build_object_and_save


class Source(enum.Enum):
    generated = "generated"
    extracted = "extracted"


class ChartType(enum.Enum):
    dot = "dot"
    horizontal_bar = "horizontal_bar"
    vertical_bar = "vertical_bar"
    line = "line"
    scatter = "scatter"


@dataclasses.dataclass
class PlotBoundingBox:
    height: int
    width: int
    x0: int
    y0: int

    def get_bounds(self):
        xs = [self.x0, self.x0 + self.width, self.x0 + self.width, self.x0, self.x0]
        ys = [self.y0, self.y0, self.y0 + self.height, self.y0 + self.height, self.y0]
        return xs, ys


@dataclasses.dataclass
class DataPoint:
    x: float or str
    y: float or str


class TextRole(enum.Enum):
    axis_title = "axis_title"
    chart_title = "chart_title"
    legend_label = "legend_label"
    tick_grouping = "tick_grouping"
    tick_label = "tick_label"
    other = "other"


@dataclasses.dataclass
class Polygon:
    x0: int
    x1: int
    x2: int
    x3: int
    y0: int
    y1: int
    y2: int
    y3: int

    def get_bounds(self):
        xs = [
            self.x0,
            self.x1,
            self.x2,
            self.x3,
            self.x0,
        ]
        ys = [
            self.y0,
            self.y1,
            self.y2,
            self.y3,
            self.y0,
        ]
        return xs, ys


@dataclasses.dataclass
class Text:
    id: int
    polygon: Polygon
    role: TextRole
    text: str

    def __post_init__(self):
        self.polygon = Polygon(**self.polygon)
        self.role = TextRole(self.role)


class ValuesType(enum.Enum):
    categorical = "categorical"
    numerical = "numerical"


@dataclasses.dataclass
class Tick:
    id: int
    x: int
    y: int


class TickType(enum.Enum):
    markers = "markers"
    separators = "separators"


@dataclasses.dataclass
class Axis:
    values_type: ValuesType
    tick_type: TickType
    ticks: list[Tick]

    def __post_init__(self):
        self.values_type = ValuesType(self.values_type)
        self.tick_type = TickType(self.tick_type)
        self.ticks = [
            Tick(id=kw["id"], x=kw["tick_pt"]["x"], y=kw["tick_pt"]["y"])
            for kw in self.ticks
        ]

    def get_bounds(self):
        min_x = min(tick.x for tick in self.ticks)
        max_x = max(tick.x for tick in self.ticks)
        min_y = min(tick.y for tick in self.ticks)
        max_y = max(tick.y for tick in self.ticks)
        xs = [min_x, max_x, max_x, min_x, min_x]
        ys = [min_y, min_y, max_y, max_y, min_y]
        return xs, ys


def convert_dashes_to_underscores_in_key_names(dictionary):
    return {k.replace("-", "_"): v for k, v in dictionary.items()}


@dataclasses.dataclass
class Axes:
    x_axis: Axis
    y_axis: Axis

    def __post_init__(self):
        self.x_axis = Axis(**convert_dashes_to_underscores_in_key_names(self.x_axis))
        self.y_axis = Axis(**convert_dashes_to_underscores_in_key_names(self.y_axis))


def preprocess_numerical_value(value):
    value = float(value)
    value = 0 if np.isnan(value) else value
    return value


def preprocess_value(value, value_type: ValuesType):
    if value_type == ValuesType.numerical:
        return preprocess_numerical_value(value)
    else:
        return str(value)


@dataclasses.dataclass
class Annotation:
    source: Source
    chart_type: ChartType
    plot_bb: PlotBoundingBox
    text: list[Text]
    axes: Axes
    data_series: list[DataPoint]

    def __post_init__(self):
        self.source = Source(self.source)
        self.chart_type = ChartType(self.chart_type)
        self.plot_bb = PlotBoundingBox(**self.plot_bb)
        self.text = [Text(**kw) for kw in self.text]
        self.axes = Axes(**convert_dashes_to_underscores_in_key_names(self.axes))
        self.data_series = [DataPoint(**kw) for kw in self.data_series]

        for i in range(len(self.data_series)):
            self.data_series[i].x = preprocess_value(
                self.data_series[i].x, self.axes.x_axis.values_type
            )
            self.data_series[i].y = preprocess_value(
                self.data_series[i].y, self.axes.y_axis.values_type
            )

    @staticmethod
    def from_dict_with_dashes(kwargs):
        return Annotation(**convert_dashes_to_underscores_in_key_names(kwargs))

    @staticmethod
    def from_image_index(image_index: int):
        image_id = load_train_image_ids()[image_index]
        return Annotation.from_dict_with_dashes(load_image_annotation(image_id))

    def get_text_by_role(self, text_role: TextRole) -> list[Text]:
        return [t for t in self.text if t.role == text_role]


@dataclasses.dataclass
class AnnotatedImage:
    id: str
    image: np.ndarray
    annotation: Annotation

    @staticmethod
    def from_image_id(image_id: str):
        return AnnotatedImage(
            id=image_id,
            image=load_image(image_id),
            annotation=Annotation.from_dict_with_dashes(
                load_image_annotation(image_id)
            ),
        )

    @staticmethod
    def from_image_index(image_index: int):
        return AnnotatedImage.from_image_id(load_train_image_ids()[image_index])


def generate_annotated_images():
    for image_id in tqdm.autonotebook.tqdm(
        load_train_image_ids(), "Iterating over annotated images"
    ):
        yield AnnotatedImage.from_image_id(image_id)


@functools.cache
def load_train_image_ids() -> list[str]:
    train_image_ids = [i.replace(".jpg", "") for i in os.listdir("data/train/images")]
    return train_image_ids[: 1000 if CONFIG.debug else None]


@functools.cache
def load_test_image_ids() -> list[str]:
    return [i.replace(".jpg", "") for i in os.listdir("data/test/images")]


@functools.cache
def load_image_annotation(image_id: str) -> dict:
    return json.load(open(f"data/train/annotations/{image_id}.json"))


def load_image(image_id: str) -> np.ndarray:
    return imageio.v3.imread(open(f"data/train/images/{image_id}.jpg", "rb"))


@dataclasses.dataclass
class DataItem:
    image: torch.FloatTensor
    target_string: str
    data_index: int

    def __post_init__(self):
        shape = einops.parse_shape(self.image, "channel height width")
        assert shape["channel"] == 3, "Image is expected to have 3 channels."


def split_train_indices_by_source():
    extracted_image_indices = []
    generated_image_indices = []
    for i, annotated_image in enumerate(generate_annotated_images()):
        if annotated_image.annotation.source == Source.extracted:
            extracted_image_indices.append(i)
        else:
            generated_image_indices.append(i)
    return extracted_image_indices, generated_image_indices


def get_train_val_split_indices(val_fraction=0.1, seed=42):
    np.random.seed(seed)
    val_size = int(len(load_train_image_ids()) * val_fraction)

    extracted_image_indices, generated_image_indices = split_train_indices_by_source()
    extracted_image_indices = np.random.permutation(extracted_image_indices)
    generated_image_indices = np.random.permutation(generated_image_indices)

    val_indices = extracted_image_indices[:val_size]
    n_generated_images_in_val = val_size - len(val_indices)
    val_indices = np.concatenate(
        [val_indices, generated_image_indices[:n_generated_images_in_val]]
    )

    train_indices = generated_image_indices[n_generated_images_in_val:]

    assert len(set(train_indices) | set(val_indices)) == len(load_train_image_ids())
    assert len(val_indices) == val_size
    assert len(set(train_indices) & set(val_indices)) == 0

    return train_indices, val_indices


def to_token_str(value: str or enum.Enum):
    string = value.name if isinstance(value, enum.Enum) else value
    if re.fullmatch("<.*>", string):
        return string
    else:
        return f"<{string}>"


@functools.cache
def get_extra_tokens() -> types.SimpleNamespace:
    token_ns = types.SimpleNamespace()

    token_ns.benetech_prompt = to_token_str("benetech_prompt")
    token_ns.benetech_prompt_end = to_token_str("/benetech_prompt")
    token_ns.x_start = to_token_str("x_start")
    token_ns.y_start = to_token_str("y_start")
    token_ns.value_separator = to_token_str(";")

    for chart_type in ChartType:
        setattr(token_ns, chart_type.name, to_token_str(chart_type))

    for values_type in ValuesType:
        setattr(token_ns, values_type.name, to_token_str(values_type))

    return token_ns


def convert_number_to_scientific_string(value: int or float) -> str:
    return f"{value:.{CONFIG.float_scientific_notation_string_precision}e}"


def convert_axis_data_to_string(
    axis_data: list[str or float], values_type: ValuesType
) -> str:
    formatted_axis_data = []
    for value in axis_data:
        if values_type == ValuesType.numerical:
            value = convert_number_to_scientific_string(value)
        formatted_axis_data.append(value)
    return get_extra_tokens().value_separator.join(formatted_axis_data)


def convert_string_to_axis_data(string, values_type: ValuesType):
    data = string.split(get_extra_tokens().value_separator)
    if values_type == ValuesType.numerical:
        data = [float(i.replace(" ", "")) for i in data]
    return data


@dataclasses.dataclass
class BenetechOutput:
    chart_type: ChartType
    x_values_type: ValuesType
    y_values_type: ValuesType
    x_data: list[str or float]
    y_data: list[str or float]

    def __post_init__(self):
        self.chart_type = ChartType(self.chart_type)
        self.x_values_type = ValuesType(self.x_values_type)
        self.y_values_type = ValuesType(self.y_values_type)
        assert isinstance(self.x_data, list)
        assert isinstance(self.y_data, list)

    def get_main_characteristics(self):
        return (
            self.chart_type,
            self.x_values_type,
            self.y_values_type,
            len(self.x_data),
            len(self.y_data),
        )

    @staticmethod
    def from_annotation(annotation: Annotation):
        return BenetechOutput(
            chart_type=annotation.chart_type,
            x_values_type=annotation.axes.x_axis.values_type,
            y_values_type=annotation.axes.y_axis.values_type,
            x_data=[dp.x for dp in annotation.data_series],
            y_data=[dp.y for dp in annotation.data_series],
        )

    def to_string(self):
        return self.format_strings(
            chart_type=self.chart_type,
            x_values_type=self.x_values_type,
            y_values_type=self.y_values_type,
            x_data=convert_axis_data_to_string(self.x_data, self.x_values_type),
            y_data=convert_axis_data_to_string(self.y_data, self.y_values_type),
        )

    @staticmethod
    def format_strings(*, chart_type, x_values_type, y_values_type, x_data, y_data):
        chart_type = to_token_str(chart_type)
        x_values_type = to_token_str(x_values_type)
        y_values_type = to_token_str(y_values_type)
        token_ns = get_extra_tokens()
        return (
            f"{token_ns.benetech_prompt}{chart_type}"
            f"{token_ns.x_start}{x_values_type}{x_data}"
            f"{token_ns.y_start}{y_values_type}{y_data}"
            f"{token_ns.benetech_prompt_end}"
        )

    @staticmethod
    def get_string_pattern():
        field_names = [field.name for field in dataclasses.fields(BenetechOutput)]
        pattern = BenetechOutput.format_strings(
            **{field_name: f"(?P<{field_name}>.*?)" for field_name in field_names}
        )
        return pattern

    @staticmethod
    def does_string_match_expected_pattern(string):
        try:
            BenetechOutput.from_string(string)
            return True
        except:
            return False

    @staticmethod
    def from_string(string):
        fullmatch = re.fullmatch(BenetechOutput.get_string_pattern(), string)
        benetech_kwargs = fullmatch.groupdict()
        benetech_kwargs["chart_type"] = ChartType(benetech_kwargs["chart_type"])
        benetech_kwargs["x_values_type"] = ValuesType(benetech_kwargs["x_values_type"])
        benetech_kwargs["y_values_type"] = ValuesType(benetech_kwargs["y_values_type"])
        benetech_kwargs["x_data"] = convert_string_to_axis_data(
            benetech_kwargs["x_data"], benetech_kwargs["x_values_type"]
        )
        benetech_kwargs["y_data"] = convert_string_to_axis_data(
            benetech_kwargs["y_data"], benetech_kwargs["y_values_type"]
        )
        return BenetechOutput(**benetech_kwargs)


def get_annotation_ground_truth_str(annotation: Annotation):
    benetech_output = BenetechOutput(
        chart_type=annotation.chart_type,
        x_values_type=annotation.axes.x_axis.values_type,
        x_data=[dp.x for dp in annotation.data_series],
        y_values_type=annotation.axes.y_axis.values_type,
        y_data=[dp.y for dp in annotation.data_series],
    )
    return benetech_output.to_string()


def get_annotation_ground_truth_str_from_image_index(image_index: int) -> str:
    return get_annotation_ground_truth_str(Annotation.from_image_index(image_index))


class Dataset(torch.utils.data.Dataset):
    def __init__(self, indices: list[int]):
        super().__init__()
        self.indices = indices
        self.to_tensor = torchvision.transforms.ToTensor()

    def __len__(self):
        return len(self.indices)

    def __getitem__(self, idx: int) -> DataItem:
        data_index = self.indices[idx]

        annotated_image = AnnotatedImage.from_image_index(data_index)

        image = annotated_image.image
        image = self.to_tensor(image)

        target_string = get_annotation_ground_truth_str(annotated_image.annotation)

        return DataItem(image=image, target_string=target_string, data_index=data_index)


def get_train_val_datasets():
    train_indices, val_indices = load_pickle_or_build_object_and_save(
        CONFIG.train_val_indices_path,
        lambda: get_train_val_split_indices(CONFIG.val_fraction, CONFIG.seed),
    )
    return Dataset(train_indices), Dataset(val_indices)


def get_train_dataset():
    return get_train_val_datasets()[0]


def get_val_dataset():
    return get_train_val_datasets()[1]


@dataclasses.dataclass
class Batch:
    images: torch.FloatTensor
    labels: torch.IntTensor
    data_indices: list[int]

    def __post_init__(self):
        if CONFIG.debug:
            images_shape = einops.parse_shape(self.images, "batch channel height width")
            labels_shape = einops.parse_shape(self.labels, "batch label")
            assert images_shape["batch"] == labels_shape["batch"]
            assert len(self.data_indices) == images_shape["batch"]


class Split(enum.Enum):
    train = "train"
    val = "val"


BatchCollateFunction = Callable[[list[DataItem], Split], Batch]


def build_dataloader(split: Split, batch_collate_function: BatchCollateFunction):
    return torch.utils.data.DataLoader(
        get_train_dataset() if split == Split.train else get_val_dataset(),
        batch_size=CONFIG.batch_size,
        shuffle=split == Split.train,
        num_workers=CONFIG.num_workers,
        collate_fn=functools.partial(batch_collate_function, split=split),
    )