File size: 4,979 Bytes
c29b35f
 
 
 
 
 
 
e949d7b
c29b35f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e949d7b
c29b35f
 
 
 
e949d7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c29b35f
e949d7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from einops.layers.torch import Rearrange
import einops
import math
import torch.nn as nn
import torch


class AddPositionalEncoding(nn.Module):

    def __init__(self, d_model, max_sequence_len=5000):
        super().__init__()

        # pos - position in sequence, i - index of element embedding
        # PE(pos, 2i) = sin(pos / 10000**(2i / d_model)) = sin(pos * e**(2i * (-log(10000))/d_model))
        # PE(pos, 2i+1) = cos(pos / 10000**(2i / d_model)) = cos(pos * e**(2i * (-log(10000))/d_model))

        positions = torch.arange(max_sequence_len)
        even_embedding_indices = torch.arange(0, d_model, 2)

        expression = torch.exp(even_embedding_indices * (-math.log(10000.0) / d_model))
        expression = torch.einsum("i, j -> ij", positions, expression)

        even_encodings = torch.sin(expression)
        odd_encodings = torch.cos(expression)

        positional_encodings = einops.rearrange(
            [even_encodings, odd_encodings],
            'even_odd pos embed -> pos (embed even_odd)'
        )

        self.register_buffer('positional_encodings', positional_encodings)

    def forward(self, batch):
        seq_len = batch.size(1)
        positional_encodings = self.positional_encodings[:seq_len, :]
        # implicit batch broadcasting
        return batch + positional_encodings


class ImageEmbedding(nn.Module):
    """Reshape image into patches and project into given dimension"""

    def __init__(self, d_model, input_width, input_height, patch_size=16, dropout=.1):
        super().__init__()
        assert input_width % patch_size == 0 and input_height % patch_size == 0, \
            "Cannot split image in patches"
        tokenize = Rearrange(
            'b c (h1 h2) (w1 w2) -> b (c h1 w1) (h2 w2)',
            h2=patch_size,
            w2=patch_size
        )
        project = nn.Linear(patch_size ** 2, d_model)
        self.embed = nn.Sequential(
            tokenize,
            project,
            AddPositionalEncoding(d_model),
            nn.Dropout(p=dropout)
        )

    def forward(self, image_batch):
        image_batch = self.embed(image_batch)
        return image_batch


class ImageEncoder(nn.Module):
    """
    Given an image, returns its vector representation.
    """

    def __init__(self, image_width, image_height, d_model, num_layers=8):
        super().__init__()
        image_embedding = ImageEmbedding(d_model, image_width, image_height)
        encoder_layer = nn.TransformerEncoderLayer(
            d_model=d_model,
            nhead=8,
            dim_feedforward=2048,
            batch_first=True
        )
        transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
        self.encode = nn.Sequential(image_embedding, transformer_encoder)

    def forward(self, batch):
        return self.encode(batch)


class Seq2SeqTransformer(nn.Module):
    def __init__(self,
                 num_encoder_layers: int,
                 num_decoder_layers: int,
                 emb_size: int,
                 nhead: int,
                 image_width: int,
                 image_height: int,
                 tgt_vocab_size: int,
                 dim_feedforward: int = 512,
                 dropout: float = 0.1):
        super(Seq2SeqTransformer, self).__init__()
        self.transformer = nn.Transformer(d_model=emb_size,
                                          nhead=nhead,
                                          num_encoder_layers=num_encoder_layers,
                                          num_decoder_layers=num_decoder_layers,
                                          dim_feedforward=dim_feedforward,
                                          dropout=dropout)
        # TODO: share weights between generator and embedding
        self.generator = nn.Linear(emb_size, tgt_vocab_size)
        self.src_tok_emb = ImageEmbedding(emb_size, image_width, image_height, dropout=dropout)
        self.tgt_tok_emb = TokenEmbedding(tgt_vocab_size, emb_size)

    def forward(self,
                src: Tensor,
                trg: Tensor,
                src_mask: Tensor,
                tgt_mask: Tensor,
                src_padding_mask: Tensor,
                tgt_padding_mask: Tensor,
                memory_key_padding_mask: Tensor):
        src_emb = self.positional_encoding(self.src_tok_emb(src))
        tgt_emb = self.positional_encoding(self.tgt_tok_emb(trg))
        outs = self.transformer(src_emb, tgt_emb, src_mask, tgt_mask, None,
                                src_padding_mask, tgt_padding_mask, memory_key_padding_mask)
        return self.generator(outs)

    def encode(self, src: Tensor, src_mask: Tensor):
        return self.transformer.encoder(self.positional_encoding(
            self.src_tok_emb(src)), src_mask)

    def decode(self, tgt: Tensor, memory: Tensor, tgt_mask: Tensor):
        return self.transformer.decoder(self.positional_encoding(
            self.tgt_tok_emb(tgt)), memory,
            tgt_mask)