Spaces:
Running
Running
File size: 7,458 Bytes
d4417c8 aff08a4 14a4094 aff08a4 14a4094 aff08a4 14a4094 aff08a4 14a4094 aff08a4 14a4094 aff08a4 14a4094 aff08a4 14a4094 aff08a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import gradio as gr
from transformers import AutoTokenizer
import transformers
import torch
import os
import time
# Model configuration
MODEL_NAME = "meta-llama/CodeLlama-7b-hf" # Using CodeLlama as requested
# Default example prompts
EXAMPLES = [
["import socket\n\ndef ping_exponential_backoff(host: str):"],
["def fibonacci(n: int) -> int:"],
["class BinarySearchTree:\n def __init__(self):"],
["async def fetch_data(url: str):"]
]
# Load model with error handling and authentication
def load_model():
try:
print("Loading model and tokenizer...")
# Get Hugging Face token from environment variable
# This will be set in the Hugging Face Space settings
hf_token = os.environ.get("HF_TOKEN")
# If running locally and token is not set, try to use the token from git config
if not hf_token:
try:
# Extract token from git config if available
import subprocess
git_url = subprocess.check_output(["git", "config", "--get", "remote.origin.url"]).decode().strip()
if "@huggingface.co" in git_url:
# Extract token from URL if it's in the format https://username:token@huggingface.co/...
hf_token = git_url.split(":")[-2].split("/")[-1] if ":" in git_url else None
if hf_token:
print("Using token from git config")
except Exception as e:
print(f"Could not extract token from git config: {str(e)}")
# Load tokenizer with token if available
if hf_token:
print("Using Hugging Face token for authentication")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=hf_token)
# Configure the pipeline with token
pipeline = transformers.pipeline(
"text-generation",
model=MODEL_NAME,
torch_dtype=torch.float16,
device_map="auto",
token=hf_token
)
else:
# Try without token (will only work if model is public or user is logged in)
print("No Hugging Face token found, trying without authentication")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
pipeline = transformers.pipeline(
"text-generation",
model=MODEL_NAME,
torch_dtype=torch.float16,
device_map="auto",
)
print("Model loaded successfully!")
return tokenizer, pipeline
except Exception as e:
print(f"Error loading model: {str(e)}")
# Try to provide more helpful error message
if "gated repo" in str(e) or "401" in str(e):
print("\nIMPORTANT: CodeLlama is a gated model that requires authentication.")
print("To use this model, you need to:")
print("1. Accept the model's license at https://huggingface.co/meta-llama/CodeLlama-7b-hf")
print("2. Set your Hugging Face token in the Space's settings")
print(" (Settings > Repository Secrets > Add > HF_TOKEN)")
# Return None to indicate failure
return None, None
# Generate code based on the prompt
def generate_code(prompt, max_length=200, temperature=0.1, top_p=0.95, top_k=10):
try:
# Check if model is loaded
if tokenizer is None or pipeline is None:
return "Error: Model failed to load. Please check the logs."
# Add a loading message
start_time = time.time()
# Generate the code
sequences = pipeline(
prompt,
do_sample=True,
top_k=top_k,
temperature=temperature,
top_p=top_p,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
max_length=max_length,
)
# Calculate generation time
generation_time = time.time() - start_time
# Format the result
result = sequences[0]['generated_text']
return f"{result}\n\n---\nGeneration time: {generation_time:.2f} seconds"
except Exception as e:
return f"Error generating code: {str(e)}"
# Load the model and tokenizer
print("Initializing CodeLlama-7b...")
tokenizer, pipeline = load_model()
# Create the Gradio interface
with gr.Blocks(title="CodeLlama Code Generation") as demo:
gr.Markdown("# CodeLlama Code Generation")
gr.Markdown("Enter a code prompt and CodeLlama will complete it for you.")
# Add a note about authentication if needed
if tokenizer is None or pipeline is None:
gr.Markdown("""
## ⚠️ Authentication Required
This demo requires authentication to access the CodeLlama model.
To use this model, you need to:
1. Accept the model's license at [meta-llama/CodeLlama-7b-hf](https://huggingface.co/meta-llama/CodeLlama-7b-hf)
2. Set your Hugging Face token in the Space's settings (Settings > Repository Secrets > Add > HF_TOKEN)
The demo will show a limited interface until authentication is set up.
""")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(
label="Code Prompt",
placeholder="Enter your code prompt here...",
lines=5
)
with gr.Row():
max_length = gr.Slider(
minimum=50,
maximum=500,
value=200,
step=10,
label="Max Length"
)
temperature = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.1,
step=0.1,
label="Temperature"
)
with gr.Row():
top_p = gr.Slider(
minimum=0.5,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p"
)
top_k = gr.Slider(
minimum=1,
maximum=50,
value=10,
step=1,
label="Top-k"
)
generate_btn = gr.Button("Generate Code")
with gr.Column():
output = gr.Textbox(
label="Generated Code",
lines=20
)
# Connect the button to the generate function
generate_btn.click(
fn=generate_code,
inputs=[prompt, max_length, temperature, top_p, top_k],
outputs=output
)
# Add examples
gr.Examples(
examples=EXAMPLES,
inputs=prompt
)
# Add information about the model
gr.Markdown("""
## About
This demo uses the CodeLlama-7b model to generate code completions based on your prompts.
- **Max Length**: Controls the maximum length of the generated text
- **Temperature**: Controls randomness (lower = more deterministic)
- **Top-p**: Controls diversity via nucleus sampling
- **Top-k**: Controls diversity via top-k sampling
**Note**: CodeLlama is a gated model that requires authentication. If you're seeing authentication errors,
please follow the instructions at the top of the page.
Created by DheepLearning
""")
# Launch the app
demo.launch()
|