File size: 5,924 Bytes
e8ee9c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

from dataclasses import dataclass
from typing import Any, List, Dict, Optional, Union, Tuple
import os

import cv2
import torch
import requests
import numpy as np
from PIL import Image
from transformers import AutoModelForMaskGeneration, AutoProcessor, pipeline

# In[2]:


@dataclass
class BoundingBox:
    xmin: int
    ymin: int
    xmax: int
    ymax: int

    @property
    def xyxy(self) -> List[float]:
        return [self.xmin, self.ymin, self.xmax, self.ymax]

@dataclass
class DetectionResult:
    score: float
    label: str
    box: BoundingBox
    mask: Optional[np.array] = None

    @classmethod
    def from_dict(cls, detection_dict: Dict) -> 'DetectionResult':
        return cls(score=detection_dict['score'],
                   label=detection_dict['label'],
                   box=BoundingBox(xmin=detection_dict['box']['xmin'],
                                   ymin=detection_dict['box']['ymin'],
                                   xmax=detection_dict['box']['xmax'],
                                   ymax=detection_dict['box']['ymax']))

def mask_to_polygon(mask: np.ndarray) -> List[List[int]]:
    # Find contours in the binary mask
    contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

    # Find the contour with the largest area
    largest_contour = max(contours, key=cv2.contourArea)

    # Extract the vertices of the contour
    polygon = largest_contour.reshape(-1, 2).tolist()

    return polygon

def polygon_to_mask(polygon: List[Tuple[int, int]], image_shape: Tuple[int, int]) -> np.ndarray:
    """
    Convert a polygon to a segmentation mask.

    Args:
    - polygon (list): List of (x, y) coordinates representing the vertices of the polygon.
    - image_shape (tuple): Shape of the image (height, width) for the mask.

    Returns:
    - np.ndarray: Segmentation mask with the polygon filled.
    """
    # Create an empty mask
    mask = np.zeros(image_shape, dtype=np.uint8)

    # Convert polygon to an array of points
    pts = np.array(polygon, dtype=np.int32)

    # Fill the polygon with white color (255)
    cv2.fillPoly(mask, [pts], color=(255,))

    return mask

def load_image(image_str: str) -> Image.Image:
    if image_str.startswith("http"):
        image = Image.open(requests.get(image_str, stream=True).raw).convert("RGB")
    else:
        image = Image.open(image_str).convert("RGB")

    return image

def get_boxes(results: DetectionResult) -> List[List[List[float]]]:
    boxes = []
    for result in results:
        xyxy = result.box.xyxy
        boxes.append(xyxy)

    return [boxes]

def refine_masks(masks: torch.BoolTensor, polygon_refinement: bool = False) -> List[np.ndarray]:
    masks = masks.cpu().float()
    masks = masks.permute(0, 2, 3, 1)
    masks = masks.mean(axis=-1)
    masks = (masks > 0).int()
    masks = masks.numpy().astype(np.uint8)
    masks = list(masks)

    if polygon_refinement:
        for idx, mask in enumerate(masks):
            shape = mask.shape
            polygon = mask_to_polygon(mask)
            mask = polygon_to_mask(polygon, shape)
            masks[idx] = mask

    return masks     


# In[6]:


def detect(
    image: Image.Image,
    labels: List[str],
    threshold: float = 0.3,
    detector_id: Optional[str] = None
) -> List[Dict[str, Any]]:
    """
    Use Grounding DINO to detect a set of labels in an image in a zero-shot fashion.
    """
    device = "cuda" if torch.cuda.is_available() else "cpu"
    detector_id = detector_id if detector_id is not None else "IDEA-Research/grounding-dino-tiny"
    object_detector = pipeline(model=detector_id, task="zero-shot-object-detection", device=device)

    labels = [label if label.endswith(".") else label+"." for label in labels]

    results = object_detector(image,  candidate_labels=labels, threshold=threshold)
    results = [DetectionResult.from_dict(result) for result in results]

    return results

def segment(
    image: Image.Image,
    detection_results: List[Dict[str, Any]],
    polygon_refinement: bool = False,
    segmenter_id: Optional[str] = None
) -> List[DetectionResult]:
    """
    Use Segment Anything (SAM) to generate masks given an image + a set of bounding boxes.
    """
    device = "cuda" if torch.cuda.is_available() else "cpu"
    segmenter_id = segmenter_id if segmenter_id is not None else "facebook/sam-vit-base"

    segmentator = AutoModelForMaskGeneration.from_pretrained(segmenter_id).to(device)
    processor = AutoProcessor.from_pretrained(segmenter_id)

    boxes = get_boxes(detection_results)
    inputs = processor(images=image, input_boxes=boxes, return_tensors="pt").to(device)

    outputs = segmentator(**inputs)
    masks = processor.post_process_masks(
        masks=outputs.pred_masks,
        original_sizes=inputs.original_sizes,
        reshaped_input_sizes=inputs.reshaped_input_sizes
    )[0]

    masks = refine_masks(masks, polygon_refinement)
    
    for detection_result, mask in zip(detection_results, masks):
        detection_result.mask = mask

    return detection_results

def grounded_segmentation(
    image: Union[Image.Image, str],
    labels: List[str],
    threshold: float = 0.3,
    polygon_refinement: bool = False,
    detector_id: Optional[str] = None,
    segmenter_id: Optional[str] = None
) -> Tuple[np.ndarray, List[DetectionResult]]:
    if isinstance(image, str):
        image = load_image(image)

    detections = detect(image, labels, threshold, detector_id)
    detections = segment(image, detections, polygon_refinement, segmenter_id)

    return image, detections


# In[7]:


# save clipped images
def cut_image(image, mask, box):
    ny_image = np.array(image)
    cut = cv2.bitwise_and(ny_image, ny_image, mask=mask.astype(np.uint8)*255)    
    x0, y0, x1, y1 = map(int, box.xyxy)
    cropped = cut[y0:y1, x0:x1]
    cropped_bgr = cv2.cvtColor(cropped, cv2.COLOR_RGB2BGR)
    return cropped_bgr