File size: 4,907 Bytes
4abd716
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import streamlit as st
from langchain_community.document_loaders import WebBaseLoader
from openai import OpenAI
from sentence_transformers import SentenceTransformer

# Initialize session state for OpenAI summary
if 'openai_summary' not in st.session_state:
    st.session_state.openai_summary = None
if 'show_summary' not in st.session_state:
    st.session_state.show_summary = False

def toggle_summary():
    st.session_state.show_summary = not st.session_state.show_summary

# Set page configuration
st.set_page_config(
    page_title="🦜 LangChain Document Explorer",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Custom CSS for better styling
st.markdown("""
    <style>
    .main {
        padding: 2rem;
    }
    .stButton>button {
        width: 100%;
        margin-top: 1rem;
    }
    .css-1d391kg {
        padding: 1rem;
    }
    </style>
""", unsafe_allow_html=True)

# Main title with emoji
st.title("🦜 Webscrapping and Summarizing using OpenAI")
st.markdown("""
    Explore web content with AI-powered analysis and processing.
    Upload a URL to get started!
""")

# Sidebar configuration
with st.sidebar:
    st.header("βš™οΈ Configuration")
    openai_api_key = st.text_input("OpenAI API Key:", type="password")
    
    st.markdown("---")
    st.markdown("""
    ### πŸ“– Quick Guide
    1. Enter your OpenAI API key
    2. Input a webpage URL
    3. Explore different analyses in the tabs
    """)
    
    st.markdown("---")
    st.markdown("Made with ❀️ using LangChain 0.3 & Streamlit 1.41.0")

# Main content area
url = st.text_input("πŸ”— Enter webpage URL:", "https://python.langchain.com/docs/")

# Document loading
docs = None
if url:
    try:
        with st.spinner("Loading webpage..."):
            loader = WebBaseLoader(web_paths=[url])
            docs = loader.load()
        st.success("βœ… Webpage loaded successfully!")
    except Exception as e:
        st.error(f"❌ Error loading webpage: {str(e)}")

# Process and display content in tabs
if docs:
    tabs = st.tabs(["πŸ“„ Original Content", "πŸ€– AI Analysis", "πŸ“Š Embeddings"])
    
    # Original Content Tab
    with tabs[0]:
        full_text = " ".join([doc.page_content for doc in docs])
        st.markdown("### Original Web Content")
        st.markdown(full_text)
    
    # AI Analysis Tab
    with tabs[1]:
        if openai_api_key:
            st.markdown("### AI Content Analysis")
            
            if st.button("Generate AI Summary", key="generate_summary"):
                try:
                    with st.spinner("Generating AI summary..."):
                        client = OpenAI(api_key=openai_api_key)
                        response = client.chat.completions.create(
                            model="gpt-3.5-turbo",
                            messages=[
                                {"role": "system", "content": "Create a detailed writeup with key points and insights from the following text.  Be grounded in the given text"},
                                {"role": "user", "content": full_text}
                            ],
                            max_tokens=500
                        )
                        st.session_state.openai_summary = response.choices[0].message.content
                
                except Exception as e:
                    st.error(f"❌ Error generating summary: {str(e)}")
            
            # Display OpenAI summary if available
            if st.session_state.openai_summary:
                st.markdown("#### πŸ“ AI-Generated Summary")
                st.markdown(st.session_state.openai_summary)
        else:
            st.warning("⚠️ Please enter your OpenAI API key in the sidebar to use AI analysis.")
    
    # Embeddings Tab
    with tabs[2]:
        st.markdown("### Document Embeddings")
        try:
            with st.spinner("Generating embeddings..."):
                model = SentenceTransformer('all-MiniLM-L6-v2')
                embeddings = model.encode(full_text)
                
                st.markdown(f"**Embeddings Shape**: {embeddings.shape}")
                st.markdown("#### Embedding Vector Preview")
                st.write(embeddings[:10])  # Show first 10 dimensions
                
                # Visualize embedding statistics
                import numpy as np
                st.markdown("#### Embedding Statistics")
                col1, col2, col3 = st.columns(3)
                with col1:
                    st.metric("Mean", f"{np.mean(embeddings):.4f}")
                with col2:
                    st.metric("Std Dev", f"{np.std(embeddings):.4f}")
                with col3:
                    st.metric("Dimensions", embeddings.shape[0])
                
        except Exception as e:
            st.error(f"❌ Error generating embeddings: {str(e)}")
else:
    st.info("πŸ‘† Please enter a URL above to get started!")