File size: 7,103 Bytes
c58af7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import streamlit as st
import numpy as np
from transformers import AutoModel
import plotly.graph_objects as go
from sklearn.manifold import MDS
import pandas as pd
import torch

# Page configuration
st.set_page_config(
    page_title="Jina Embeddings Explorer",
    page_icon="🔮",
    layout="wide"
)

# Custom CSS
st.markdown("""
    <style>
    .title-font {
        font-size: 28px !important;
        font-weight: bold;
        color: #2c3e50;
    }
    </style>
    """, unsafe_allow_html=True)

@st.cache_resource
def load_model():
    return AutoModel.from_pretrained("jinaai/jina-embeddings-v3", trust_remote_code=True)

model = load_model()

def get_embeddings(texts, task="text-matching"):
    """Get embeddings using Jina v3 model"""
    with torch.no_grad():
        embeddings = model.encode(texts, task=task)
    return embeddings

def create_similarity_based_visualization(texts, task="text-matching"):
    """Create visualization based on similarity distances"""
    n = len(texts)
    
    # Get embeddings
    embeddings = get_embeddings(texts, task=task)
    
    # Calculate similarity matrix using cosine similarity
    similarity_matrix = np.zeros((n, n))
    for i in range(n):
        for j in range(n):
            similarity_matrix[i][j] = np.dot(embeddings[i], embeddings[j]) / (
                np.linalg.norm(embeddings[i]) * np.linalg.norm(embeddings[j]))
    
    # Convert similarities to distances
    distance_matrix = 1 - similarity_matrix
    
    # Use MDS for visualization
    mds = MDS(n_components=3, dissimilarity='precomputed', random_state=42)
    coords = mds.fit_transform(distance_matrix)
    
    # Create 3D visualization
    fig = go.Figure()
    
    # Add points
    fig.add_trace(go.Scatter3d(
        x=coords[:, 0],
        y=coords[:, 1],
        z=coords[:, 2],
        mode='markers+text',
        text=texts,
        textposition='top center',
        marker=dict(
            size=10,
            color=list(range(len(texts))),
            colorscale='Viridis',
            opacity=0.8
        ),
        name='Texts'
    ))
    
    # Add lines between points
    for i in range(n):
        for j in range(i+1, n):
            opacity = max(0.1, min(1.0, similarity_matrix[i,j]))
            fig.add_trace(go.Scatter3d(
                x=[coords[i,0], coords[j,0]],
                y=[coords[i,1], coords[j,1]],
                z=[coords[i,2], coords[j,2]],
                mode='lines',
                line=dict(
                    color='gray',
                    width=2
                ),
                opacity=opacity,
                showlegend=False,
                hoverinfo='skip'
            ))
    
    fig.update_layout(
        title=f"3D Similarity Visualization (Task: {task})",
        scene=dict(
            xaxis_title="Dimension 1",
            yaxis_title="Dimension 2",
            zaxis_title="Dimension 3",
            camera=dict(
                up=dict(x=0, y=0, z=1),
                center=dict(x=0, y=0, z=0),
                eye=dict(x=1.5, y=1.5, z=1.5)
            )
        ),
        height=700
    )
    return fig, similarity_matrix

def main():
    st.title("🔮 Jina Embeddings v3 Explorer")
    st.markdown("<p class='title-font'>Explore text similarities using state-of-the-art embeddings</p>", 
                unsafe_allow_html=True)
    
    with st.expander("ℹ️ About Jina Embeddings v3", expanded=True):
        st.markdown("""
        This tool uses Jina Embeddings v3, a powerful multilingual embedding model that supports:
        - Multiple tasks: text-matching, retrieval, classification, separation
        - Long sequences: up to 8192 tokens
        - 30+ languages
        - State-of-the-art performance
        """)
    
    # Task selection
    task = st.selectbox(
        "Select Task",
        ["text-matching", "retrieval.query", "retrieval.passage", "separation", "classification"],
        help="Different tasks optimize embeddings for specific use cases"
    )
    
    # Example templates
    examples = {
        "Similar Concepts": [
            "I love programming in Python",
            "Coding with Python is amazing",
            "Software development is fun",
            "I enjoy writing code"
        ],
        "Multilingual": [
            "Hello, how are you?",
            "Hola, ¿cómo estás?",
            "Bonjour, comment allez-vous?",
            "你好,你好吗?"
        ],
        "Technical Concepts": [
            "Machine learning is a subset of artificial intelligence",
            "AI systems can learn from data",
            "Neural networks process information",
            "Deep learning models require training"
        ]
    }
    
    col1, col2 = st.columns([3, 1])
    with col1:
        selected_example = st.selectbox("Choose an example set:", list(examples.keys()))
    with col2:
        if st.button("Load Example"):
            st.session_state.texts = examples[selected_example]
    
    # Text input
    num_texts = st.slider("Number of texts:", 2, 6, 4)
    texts = []
    
    for i in range(num_texts):
        default_text = (examples[selected_example][i] 
                       if selected_example in examples and i < len(examples[selected_example])
                       else f"Example text {i+1}")
        text = st.text_area(
            f"Text {i+1}",
            value=default_text,
            height=100,
            key=f"text_{i}"
        )
        texts.append(text)
    
    if st.button("Analyze Texts", type="primary"):
        if all(texts):
            fig, similarity_matrix = create_similarity_based_visualization(texts, task)
            
            # Display visualization
            st.plotly_chart(fig, use_container_width=True)
            
            # Show similarity matrix
            st.markdown("### Similarity Matrix")
            fig_matrix = go.Figure(data=go.Heatmap(
                z=similarity_matrix,
                x=[f"Text {i+1}" for i in range(len(texts))],
                y=[f"Text {i+1}" for i in range(len(texts))],
                colorscale='Viridis',
                text=np.round(similarity_matrix, 3),
                texttemplate='%{text}',
                textfont={"size": 12},
            ))
            
            fig_matrix.update_layout(
                title=f"Similarity Matrix (Task: {task})",
                height=400
            )
            
            st.plotly_chart(fig_matrix, use_container_width=True)
            
            # Interpretation
            st.markdown("### 📊 Similarity Analysis")
            for i in range(len(texts)):
                for j in range(i+1, len(texts)):
                    similarity = similarity_matrix[i][j]
                    interpretation = (
                        "🟢 Very Similar" if similarity > 0.8
                        else "🟡 Moderately Similar" if similarity > 0.5
                        else "🔴 Different"
                    )
                    st.write(f"{interpretation} ({similarity:.3f}): Text {i+1} vs Text {j+1}")

if __name__ == "__main__":
    main()