File size: 22,835 Bytes
7ffc610 ef9cdda dbc05eb 998a350 ef9cdda 7ffc610 1c51010 7ffc610 ab6af92 7ffc610 ab6af92 a5f8a58 1c51010 7ffc610 cf427d1 7ffc610 cf427d1 7ffc610 ab6af92 7ffc610 dbc05eb ef9cdda dbc05eb ef9cdda 7ffc610 e4a1156 ef9cdda ab6af92 ef9cdda dbc05eb 7ffc610 326e0ae ab6af92 7ffc610 ab6af92 a5f8a58 cf427d1 ab6af92 dbc05eb 7ffc610 ab6af92 7ffc610 cf427d1 e4a1156 7ffc610 ab6af92 7ffc610 ab6af92 7ffc610 ab6af92 e4a1156 7ffc610 dbc05eb 7ffc610 cf427d1 e4a1156 ef9cdda ab6af92 e4a1156 dbc05eb e4a1156 ef9cdda e4a1156 ef9cdda dbc05eb ef9cdda dbc05eb ef9cdda 7ffc610 ab6af92 ef9cdda ab6af92 ef9cdda 326e0ae ef9cdda 326e0ae ef9cdda 326e0ae ef9cdda 326e0ae ef9cdda 7ffc610 326e0ae 7ffc610 a5f8a58 7ffc610 326e0ae ef9cdda ab6af92 ef9cdda 7ffc610 326e0ae a5f8a58 326e0ae a5f8a58 ef9cdda ab6af92 a5f8a58 ab6af92 326e0ae 7ffc610 a5f8a58 7ffc610 a5f8a58 e4a1156 a5f8a58 ab6af92 a5f8a58 7ffc610 a5f8a58 ef9cdda ab6af92 a5f8a58 7ffc610 a5f8a58 7ffc610 dbc05eb 7ffc610 dbc05eb 7ffc610 326e0ae 7ffc610 326e0ae ef9cdda 326e0ae ef9cdda dbc05eb ef9cdda 326e0ae ef9cdda 7ffc610 326e0ae 7ffc610 ab6af92 7ffc610 e4a1156 7ffc610 ab6af92 ef9cdda dbc05eb e4a1156 7ffc610 ef9cdda 326e0ae ef9cdda dbc05eb ef9cdda 7ffc610 326e0ae 7ffc610 ab6af92 e4a1156 7ffc610 ab6af92 dbc05eb 7ffc610 ef9cdda e4a1156 dbc05eb ef9cdda dbc05eb ef9cdda dbc05eb 326e0ae dbc05eb e4a1156 dbc05eb e4a1156 dbc05eb e4a1156 dbc05eb e4a1156 dbc05eb e4a1156 dbc05eb 7ffc610 ef9cdda 7ffc610 326e0ae dbc05eb ab6af92 7ffc610 dbc05eb e4a1156 7ffc610 cf427d1 ef9cdda 326e0ae 7ffc610 e4a1156 7ffc610 ab6af92 cf427d1 7ffc610 a5f8a58 dbc05eb a5f8a58 326e0ae 7ffc610 cf427d1 326e0ae a5f8a58 326e0ae 7ffc610 326e0ae 7ffc610 326e0ae 7ffc610 326e0ae 7ffc610 322ba51 dbc05eb 7ffc610 326e0ae ef9cdda dbc05eb 7ffc610 326e0ae 7ffc610 326e0ae 7ffc610 2c1a7ab 7ffc610 dbc05eb 326e0ae 7ffc610 dbc05eb 7ffc610 326e0ae 2c1a7ab cf427d1 e4a1156 322ba51 326e0ae 322ba51 326e0ae ef9cdda 326e0ae 7ffc610 322ba51 cf427d1 7ffc610 326e0ae 322ba51 326e0ae 322ba51 326e0ae 322ba51 326e0ae 322ba51 cf427d1 326e0ae 322ba51 ef9cdda 7ffc610 ef9cdda 326e0ae 7ffc610 326e0ae 7ffc610 ef9cdda dbc05eb e4a1156 322ba51 7ffc610 326e0ae 7ffc610 326e0ae 7ffc610 326e0ae 7ffc610 326e0ae 7ffc610 322ba51 7ffc610 322ba51 7ffc610 322ba51 7ffc610 e4a1156 7ffc610 326e0ae 7ffc610 326e0ae e4a1156 326e0ae e4a1156 a5f8a58 ef9cdda 7ffc610 cf427d1 2c1a7ab cf427d1 7ffc610 ab6af92 ef9cdda 322ba51 7ffc610 ef9cdda 7ffc610 326e0ae 7ffc610 326e0ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 |
import gradio as gr
import torch
import numpy as np
import librosa
import soundfile as sf
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import warnings
import json
import time
from datetime import datetime
import os
import sys
import gc
# Import with enhanced error handling
try:
from dia.model import Dia
DIA_AVAILABLE = True
print("β
Dia TTS library imported successfully")
except ImportError as e:
print(f"β οΈ Dia TTS not available: {e}")
DIA_AVAILABLE = False
warnings.filterwarnings("ignore")
# Global models
asr_pipe = None
qwen_model = None
qwen_tokenizer = None
tts_model = None
tts_type = None
class ConversationManager:
def __init__(self, max_exchanges=5):
self.history = []
self.max_exchanges = max_exchanges
self.current_emotion = "neutral"
def add_exchange(self, user_input, ai_response, emotion="neutral"):
self.history.append({
"timestamp": datetime.now().isoformat(),
"user": user_input,
"ai": ai_response,
"emotion": emotion
})
if len(self.history) > self.max_exchanges:
self.history = self.history[-self.max_exchanges:]
def get_context(self):
context = ""
for exchange in self.history[-3:]:
context += f"User: {exchange['user']}\nAI: {exchange['ai']}\n"
return context
def clear(self):
self.history = []
self.current_emotion = "neutral"
def optimize_gpu_memory():
"""Optimize GPU memory usage"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
gc.collect()
def check_system_info():
"""Check system capabilities"""
print("π System Information:")
print(f"Python: {sys.version}")
print(f"PyTorch: {torch.__version__}")
if torch.cuda.is_available():
print(f"β
CUDA: {torch.cuda.get_device_name()}")
print(f"πΎ GPU Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB")
print(f"π₯ CUDA Version: {torch.version.cuda}")
# Check current memory usage
allocated = torch.cuda.memory_allocated() / 1e9
cached = torch.cuda.memory_reserved() / 1e9
print(f"π Current GPU Usage: {allocated:.1f}GB allocated, {cached:.1f}GB cached")
else:
print("β οΈ CUDA not available, using CPU")
def load_models():
"""Load all models with FIXED Dia loading"""
global asr_pipe, qwen_model, qwen_tokenizer, tts_model, tts_type
print("π Loading Maya AI models...")
optimize_gpu_memory()
# Load ASR model (Whisper)
print("π€ Loading Whisper for ASR...")
try:
asr_pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-base",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device=0 if torch.cuda.is_available() else -1
)
print("β
Whisper ASR loaded successfully!")
optimize_gpu_memory()
except Exception as e:
print(f"β Error loading Whisper: {e}")
return False
# Load Qwen model
print("π§ Loading Qwen2.5-1.5B for conversation...")
try:
model_name = "Qwen/Qwen2.5-1.5B-Instruct"
qwen_tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True
)
qwen_model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto" if torch.cuda.is_available() else None,
trust_remote_code=True
)
print("β
Qwen loaded successfully!")
optimize_gpu_memory()
except Exception as e:
print(f"β Error loading Qwen: {e}")
return False
# FIXED: Load Dia TTS without unsupported parameters
if DIA_AVAILABLE:
try:
print("Attempting to load Dia TTS with FIXED parameters...")
# Clear memory before loading Dia
optimize_gpu_memory()
# FIXED: Remove unsupported parameters
tts_model = Dia.from_pretrained(
"nari-labs/Dia-1.6B",
compute_dtype="float16" if torch.cuda.is_available() else "float32"
# Removed: low_cpu_mem_usage=True (not supported by Dia)
)
# Move to GPU if available
if torch.cuda.is_available():
tts_model = tts_model.cuda()
tts_type = "dia"
print("β
Dia TTS loaded successfully!")
optimize_gpu_memory()
return True
except Exception as e:
print(f"β οΈ Dia TTS failed to load: {e}")
tts_model = None
print("β οΈ No TTS available, running in text-only mode")
tts_type = "none"
return True
def detect_emotion_from_text(text):
"""Enhanced emotion detection from text"""
text_lower = text.lower()
emotions = {
'happy': ['happy', 'great', 'awesome', 'wonderful', 'excited', 'laugh', 'amazing',
'fantastic', 'excellent', 'brilliant', 'perfect', 'love', 'joy', 'cheerful'],
'sad': ['sad', 'upset', 'disappointed', 'cry', 'terrible', 'awful', 'depressed',
'miserable', 'heartbroken', 'devastated', 'gloomy', 'melancholy'],
'angry': ['angry', 'mad', 'furious', 'annoyed', 'frustrated', 'hate', 'rage',
'irritated', 'outraged', 'livid', 'enraged'],
'surprised': ['wow', 'incredible', 'surprised', 'unbelievable', 'shocking',
'astonishing', 'remarkable', 'extraordinary', 'mind-blowing'],
'neutral': []
}
emotion_scores = {}
for emotion, keywords in emotions.items():
score = sum(1 for keyword in keywords if keyword in text_lower)
if score > 0:
emotion_scores[emotion] = score
if emotion_scores:
return max(emotion_scores, key=emotion_scores.get)
return 'neutral'
def speech_to_text_with_emotion(audio_input):
"""Enhanced STT with proper audio processing"""
try:
if audio_input is None:
return "", "neutral"
print("π€ Processing audio input...")
if isinstance(audio_input, tuple):
sample_rate, audio_data = audio_input
print(f"Audio input: sample_rate={sample_rate}, shape={audio_data.shape}")
# Handle different audio formats
if audio_data.dtype == np.int16:
audio_data = audio_data.astype(np.float32) / 32768.0
elif audio_data.dtype == np.int32:
audio_data = audio_data.astype(np.float32) / 2147483648.0
elif audio_data.dtype != np.float32:
audio_data = audio_data.astype(np.float32)
# Handle stereo audio
if len(audio_data.shape) > 1:
audio_data = audio_data.mean(axis=1)
else:
audio_data = audio_input
sample_rate = 16000
# Validate audio
if len(audio_data) < 1600:
return "Audio too short, please speak for at least 1 second", "neutral"
max_amplitude = np.max(np.abs(audio_data))
if max_amplitude < 0.01:
return "Audio too quiet, please speak louder", "neutral"
# Normalize audio
if max_amplitude > 0:
audio_data = audio_data / max_amplitude * 0.95
# Resample to 16kHz if needed
if sample_rate != 16000:
print(f"Resampling from {sample_rate}Hz to 16000Hz...")
audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000)
print("π Running Whisper ASR...")
result = asr_pipe(audio_data, language='en') # Force English
transcription = result['text'].strip()
print(f"Transcription: '{transcription}'")
if not transcription or len(transcription) < 2:
return "No clear speech detected, please try speaking more clearly", "neutral"
emotion = detect_emotion_from_text(transcription)
print(f"Detected emotion: {emotion}")
return transcription, emotion
except Exception as e:
print(f"β Error in STT: {e}")
return "Sorry, I couldn't understand that. Please try again.", "neutral"
def generate_contextual_response(user_input, emotion, conversation_manager):
"""Enhanced response generation with memory optimization"""
try:
optimize_gpu_memory()
context = conversation_manager.get_context()
emotional_prompts = {
"happy": "Respond with genuine enthusiasm and joy. Use positive language and show excitement.",
"sad": "Respond with empathy and comfort. Be gentle and understanding.",
"angry": "Respond calmly and try to help. Be patient and de-escalate.",
"surprised": "Share in their surprise and show curiosity. Be engaging.",
"neutral": "Respond naturally and conversationally. Be helpful and friendly."
}
system_prompt = f"""You are Maya, a friendly AI assistant with emotional intelligence.
{emotional_prompts.get(emotion, emotional_prompts['neutral'])}
Previous context: {context}
User emotion: {emotion}
Guidelines:
- Keep responses very concise (1 sentence maximum)
- Be natural and conversational
- Show empathy and understanding
- Provide helpful responses
"""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_input}
]
text = qwen_tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
model_inputs = qwen_tokenizer([text], return_tensors="pt")
if torch.cuda.is_available():
model_inputs = model_inputs.to(qwen_model.device)
with torch.no_grad():
generated_ids = qwen_model.generate(
model_inputs.input_ids,
max_new_tokens=50,
do_sample=True,
temperature=0.7,
top_p=0.9,
repetition_penalty=1.1,
pad_token_id=qwen_tokenizer.eos_token_id,
attention_mask=model_inputs.attention_mask
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = qwen_tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
response = response.strip()
if response.startswith("Maya:"):
response = response[5:].strip()
optimize_gpu_memory()
return response
except Exception as e:
print(f"Error in response generation: {e}")
return "I'm sorry, I'm having trouble processing that right now."
def text_to_speech_emotional(text, emotion="neutral"):
"""FIXED TTS with proper Dia configuration"""
try:
if tts_model is None:
print(f"π Maya says ({emotion}): {text}")
return None
optimize_gpu_memory()
if tts_type == "dia":
# Simplified text processing for Dia
enhanced_text = f"[S1] {text}"
# Limit text length to prevent memory issues
if len(enhanced_text) > 200:
enhanced_text = enhanced_text[:200] + "..."
print(f"Generating Dia TTS for: {enhanced_text}")
try:
with torch.no_grad():
audio_output = tts_model.generate(
enhanced_text,
use_torch_compile=False,
verbose=False
)
# Enhanced audio processing
if isinstance(audio_output, torch.Tensor):
audio_output = audio_output.cpu().numpy()
# Ensure proper audio format
if len(audio_output.shape) > 1:
audio_output = audio_output.squeeze()
# Conservative normalization
if len(audio_output) > 0:
# Remove DC offset
audio_output = audio_output - np.mean(audio_output)
# Gentle normalization
max_val = np.max(np.abs(audio_output))
if max_val > 0:
audio_output = audio_output / max_val * 0.8
# Ensure correct data type
audio_output = audio_output.astype(np.float32)
# Validate audio output
if np.any(np.isnan(audio_output)) or np.any(np.isinf(audio_output)):
print("β Audio contains NaN or Inf values")
return None
print(f"β
Generated audio: shape={audio_output.shape}, dtype={audio_output.dtype}, range=[{audio_output.min():.3f}, {audio_output.max():.3f}]")
optimize_gpu_memory()
return (44100, audio_output)
except Exception as e:
print(f"β Error in Dia generation: {e}")
optimize_gpu_memory()
return None
else:
print(f"π Maya says ({emotion}): {text}")
return None
except Exception as e:
print(f"β Error in TTS: {e}")
optimize_gpu_memory()
print(f"π Maya says ({emotion}): {text}")
return None
# Initialize conversation manager
conv_manager = ConversationManager()
def start_call():
"""Initialize call and return greeting"""
conv_manager.clear()
optimize_gpu_memory()
greeting_text = "Hello! I'm Maya. How can I help you today?"
greeting_audio = text_to_speech_emotional(greeting_text, "happy")
tts_status = f"Using {tts_type.upper()} TTS" if tts_type != "none" else "Text-only mode"
return greeting_audio, greeting_text, f"π Call started! Maya is ready. {tts_status}"
def process_conversation(audio_input):
"""Main conversation processing pipeline"""
if audio_input is None:
return None, "Please record some audio first.", "", "β No audio input received."
try:
print("π Processing conversation...")
optimize_gpu_memory()
# STT + Emotion Detection
user_text, emotion = speech_to_text_with_emotion(audio_input)
# Check for STT errors
error_phrases = ["audio too short", "audio too quiet", "no clear speech", "sorry", "couldn't understand"]
if any(phrase in user_text.lower() for phrase in error_phrases):
return None, user_text, "", f"β STT Issue: {user_text}"
if not user_text or user_text.strip() == "":
return None, "I didn't catch that. Please speak louder and closer to the microphone.", "", "β No speech detected."
# Generate response
ai_response = generate_contextual_response(user_text, emotion, conv_manager)
# Convert to speech
response_audio = text_to_speech_emotional(ai_response, emotion)
# Update history
conv_manager.add_exchange(user_text, ai_response, emotion)
# Memory status
if torch.cuda.is_available():
allocated = torch.cuda.memory_allocated() / 1e9
status = f"β
Success! | Emotion: {emotion} | Exchange: {len(conv_manager.history)}/5 | GPU: {allocated:.1f}GB"
else:
status = f"β
Success! | Emotion: {emotion} | Exchange: {len(conv_manager.history)}/5"
return response_audio, ai_response, user_text, status
except Exception as e:
error_msg = f"β Error: {str(e)}"
print(error_msg)
optimize_gpu_memory()
return None, "I'm sorry, I encountered an error. Please try again.", "", error_msg
def get_conversation_history():
"""Return conversation history"""
if not conv_manager.history:
return "No conversation history yet. Start a call to begin!"
history_text = "π **Conversation History:**\n\n"
for i, exchange in enumerate(conv_manager.history, 1):
timestamp = exchange['timestamp'][:19].replace('T', ' ')
history_text += f"**Exchange {i}** ({timestamp}) - Emotion: {exchange['emotion']}\n"
history_text += f"π€ **You:** {exchange['user']}\n"
history_text += f"π€ **Maya:** {exchange['ai']}\n\n"
return history_text
def end_call():
"""End call with memory cleanup"""
farewell_text = "Thank you for talking with me! Have a wonderful day!"
farewell_audio = text_to_speech_emotional(farewell_text, "happy")
conv_manager.clear()
optimize_gpu_memory()
return farewell_audio, farewell_text, "πβ Call ended. Thank you!"
def create_interface():
"""Create Gradio interface"""
with gr.Blocks(
title="Maya AI - Speech-to-Speech Assistant",
theme=gr.themes.Soft()
) as demo:
gr.HTML("""
<div style="text-align: center; padding: 25px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); border-radius: 15px; margin-bottom: 25px;">
<h1 style="color: white; margin: 0; font-size: 2.8em;">ποΈ Maya AI</h1>
<p style="color: white; margin: 15px 0; font-size: 1.3em;">Advanced Speech-to-Speech Conversational AI</p>
<p style="color: #E8E8E8; margin: 0;">Natural β’ Emotional β’ Contextual β’ Intelligent</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.HTML("<h3>π Call Controls</h3>")
start_btn = gr.Button("π Start Call", variant="primary", size="lg")
end_btn = gr.Button("πβ End Call", variant="secondary", size="lg")
gr.HTML("<h3>π€ Voice Input</h3>")
audio_input = gr.Audio(
label="Record Your Message (Speak clearly for 2+ seconds)",
sources=["microphone"],
type="numpy"
)
process_btn = gr.Button("π― Process Message", variant="primary", size="lg")
status_display = gr.Textbox(
label="π System Status",
interactive=False,
lines=3,
value="π Ready! Click 'Start Call' to begin."
)
with gr.Column(scale=2):
gr.HTML("<h3>π Maya's Response</h3>")
response_audio = gr.Audio(
label="Maya's Voice Response",
type="numpy",
interactive=False,
autoplay=True,
show_download_button=True
)
with gr.Row():
with gr.Column():
user_text_display = gr.Textbox(
label="π€ What You Said",
interactive=False,
lines=4
)
with gr.Column():
ai_text_display = gr.Textbox(
label="π€ Maya's Response",
interactive=False,
lines=4
)
with gr.Row():
with gr.Column():
gr.HTML("<h3>π Conversation History</h3>")
history_btn = gr.Button("π Show History", variant="secondary")
history_display = gr.Markdown("No conversation history yet.")
# Event handlers
start_btn.click(
fn=start_call,
outputs=[response_audio, ai_text_display, status_display]
)
process_btn.click(
fn=process_conversation,
inputs=[audio_input],
outputs=[response_audio, ai_text_display, user_text_display, status_display]
)
end_btn.click(
fn=end_call,
outputs=[response_audio, ai_text_display, status_display]
)
history_btn.click(
fn=get_conversation_history,
outputs=[history_display]
)
# Instructions
gr.HTML("""
<div style="margin-top: 30px; padding: 25px; background: #f8f9fa; border-radius: 15px;">
<h3>π‘ How to Use Maya AI:</h3>
<ol>
<li><strong>Start Call:</strong> Click "π Start Call" - Maya will greet you</li>
<li><strong>Record:</strong> Speak clearly for at least 2 seconds</li>
<li><strong>Process:</strong> Click "π― Process Message"</li>
<li><strong>Listen:</strong> Maya will respond with natural speech</li>
<li><strong>Continue:</strong> Keep chatting (up to 5 exchanges)</li>
<li><strong>End:</strong> Click "πβ End Call" when done</li>
</ol>
<div style="margin-top: 20px; padding: 15px; background: #d1ecf1; border-radius: 8px;">
<p><strong>π§ Fixed Issues:</strong></p>
<ul>
<li>β
Pydantic version pinned to 2.10.6 (fixes Gradio crash)</li>
<li>β
Dia TTS loading parameters corrected</li>
<li>β
Memory optimization for T4 GPU</li>
<li>β
Audio processing enhanced</li>
</ul>
</div>
</div>
""")
return demo
if __name__ == "__main__":
print("π Initializing Maya AI System...")
check_system_info()
if load_models():
print("β
All models loaded successfully!")
print(f"ποΈ TTS Mode: {tts_type.upper()}")
print("π Launching Maya AI Interface...")
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_error=True
)
else:
print("β Failed to load models.")
|