Spaces:
Runtime error
Runtime error
File size: 6,845 Bytes
cb80c28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
'''
We implemented `iCaRL+RMM`, `FOSTER+RMM` in [rmm.py](models/rmm.py). We implemented the `Pretraining Stage` of `RMM` in [rmm_train.py](rmm_train.py).
Use the following training script to run it.
```bash
python rmm_train.py --config=./exps/rmm-pretrain.json
```
'''
import json
import argparse
from trainer import train
import sys
import logging
import copy
import torch
from utils import factory
from utils.data_manager import DataManager
from utils.rl_utils.ddpg import DDPG
from utils.rl_utils.rl_utils import ReplayBuffer
from utils.toolkit import count_parameters
import os
import numpy as np
import random
class CILEnv:
def __init__(self, args) -> None:
self._args = copy.deepcopy(args)
self.settings = [(50, 2), (50, 5), (50, 10), (50, 20), (10, 10), (20, 20), (5, 5)]
# self.settings = [(5,5)] # Debug
self._args["init_cls"], self._args["increment"] = self.settings[np.random.randint(len(self.settings))]
self.data_manager = DataManager(
self._args["dataset"],
self._args["shuffle"],
self._args["seed"],
self._args["init_cls"],
self._args["increment"],
)
self.model = factory.get_model(self._args["model_name"], self._args)
@property
def nb_task(self):
return self.data_manager.nb_tasks
@property
def cur_task(self):
return self.model._cur_task
def get_task_size(self, task_id):
return self.data_manager.get_task_size(task_id)
def reset(self):
self._args["init_cls"], self._args["increment"] = self.settings[np.random.randint(len(self.settings))]
self.data_manager = DataManager(
self._args["dataset"],
self._args["shuffle"],
self._args["seed"],
self._args["init_cls"],
self._args["increment"],
)
self.model = factory.get_model(self._args["model_name"], self._args)
info = "start new task: dataset: {}, init_cls: {}, increment: {}".format(
self._args["dataset"], self._args["init_cls"], self._args["increment"]
)
return np.array([self.get_task_size(0) / 100, 0]), None, False, info
def step(self, action):
self.model._m_rate_list.append(action[0])
self.model._c_rate_list.append(action[1])
self.model.incremental_train(self.data_manager)
cnn_accy, nme_accy = self.model.eval_task()
self.model.after_task()
done = self.cur_task == self.nb_task - 1
info = "running task [{}/{}]: dataset: {}, increment: {}, cnn_accy top1: {}, top5: {}".format(
self.model._known_classes,
100,
self._args["dataset"],
self._args["increment"],
cnn_accy["top1"],
cnn_accy["top5"],
)
return (
np.array(
[
self.get_task_size(self.cur_task+1)/100 if not done else 0.,
self.model.memory_size
/ (self.model.memory_size + self.model.new_memory_size),
]
),
cnn_accy["top1"]/100,
done,
info,
)
def _train(args):
logs_name = "logs/RL-CIL/{}/".format(args["model_name"])
if not os.path.exists(logs_name):
os.makedirs(logs_name)
logfilename = "logs/RL-CIL/{}/{}_{}_{}_{}_{}".format(
args["model_name"],
args["prefix"],
args["seed"],
args["model_name"],
args["convnet_type"],
args["dataset"],
)
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(filename)s] => %(message)s",
handlers=[
logging.FileHandler(filename=logfilename + ".log"),
logging.StreamHandler(sys.stdout),
],
)
_set_random()
_set_device(args)
print_args(args)
actor_lr = 5e-4
critic_lr = 5e-3
num_episodes = 200
hidden_dim = 32
gamma = 0.98
tau = 0.005
buffer_size = 1000
minimal_size = 50
batch_size = 32
sigma = 0.2 # action noise, encouraging the off-policy algo to explore.
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
env = CILEnv(args)
replay_buffer = ReplayBuffer(buffer_size)
agent = DDPG(
2, 1, 4, hidden_dim, False, 1, sigma, actor_lr, critic_lr, tau, gamma, device
)
for iteration in range(num_episodes):
state, *_, info = env.reset()
logging.info(info)
done = False
while not done:
action = agent.take_action(state)
logging.info(f"take action: m_rate {action[0]}, c_rate {action[1]}")
next_state, reward, done, info = env.step(action)
logging.info(info)
replay_buffer.add(state, action, reward, next_state, done)
state = next_state
if replay_buffer.size() > minimal_size:
b_s, b_a, b_r, b_ns, b_d = replay_buffer.sample(batch_size)
transition_dict = {
"states": b_s,
"actions": b_a,
"next_states": b_ns,
"rewards": b_r,
"dones": b_d,
}
agent.update(transition_dict)
def _set_device(args):
device_type = args["device"]
gpus = []
for device in device_type:
if device_type == -1:
device = torch.device("cpu")
else:
device = torch.device("cuda:{}".format(device))
gpus.append(device)
args["device"] = gpus
def _set_random():
random.seed(1)
torch.manual_seed(1)
torch.cuda.manual_seed(1)
torch.cuda.manual_seed_all(1)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def print_args(args):
for key, value in args.items():
logging.info("{}: {}".format(key, value))
def train(args):
seed_list = copy.deepcopy(args["seed"])
device = copy.deepcopy(args["device"])
for seed in seed_list:
args["seed"] = seed
args["device"] = device
_train(args)
def main():
args = setup_parser().parse_args()
param = load_json(args.config)
args = vars(args) # Converting argparse Namespace to a dict.
args.update(param) # Add parameters from json
train(args)
def load_json(settings_path):
with open(settings_path) as data_file:
param = json.load(data_file)
return param
def setup_parser():
parser = argparse.ArgumentParser(
description="Reproduce of multiple continual learning algorthms."
)
parser.add_argument(
"--config",
type=str,
default="./exps/finetune.json",
help="Json file of settings.",
)
return parser
if __name__ == "__main__":
main()
|