Spaces:
Running
Running
File size: 12,315 Bytes
93bede5 3b6e4a1 acee5db 93bede5 acee5db bfb4d2b acee5db bfb4d2b acee5db bfb4d2b acee5db 93bede5 acee5db 93bede5 acee5db 0ff5cef 93bede5 acee5db 93bede5 acee5db 93bede5 acee5db bfb4d2b acee5db 93bede5 acee5db bfb4d2b acee5db bfb4d2b acee5db 0542ac5 acee5db 0ff5cef bfb4d2b acee5db 0ff5cef acee5db 0ff5cef bfb4d2b acee5db 93bede5 acee5db bfb4d2b acee5db bfb4d2b acee5db bfb4d2b acee5db bfb4d2b 93bede5 acee5db bfb4d2b acee5db bfb4d2b acee5db bfb4d2b acee5db 93bede5 acee5db bfb4d2b acee5db bfb4d2b acee5db 93bede5 acee5db bfb4d2b acee5db bfb4d2b acee5db bfb4d2b acee5db bfb4d2b acee5db bfb4d2b acee5db bfb4d2b acee5db bfb4d2b 93bede5 acee5db 93bede5 acee5db 93bede5 bfb4d2b 93bede5 acee5db bfb4d2b acee5db bfb4d2b acee5db bfb4d2b acee5db bfb4d2b acee5db 93bede5 acee5db 93bede5 0c0af1b 93bede5 3b6e4a1 93bede5 bfb4d2b 93bede5 acee5db 3b6e4a1 bfb4d2b 93bede5 bfb4d2b acee5db bfb4d2b 93bede5 bfb4d2b 93bede5 3b6e4a1 0c0af1b 3b6e4a1 691b503 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import os
import gradio as gr
from typing import List
import logging
import logging.handlers
import time
import random
from langchain_openai import ChatOpenAI
from langchain_core.tools import tool
from langgraph.prebuilt import create_react_agent
from langchain_core.messages import HumanMessage
from langchain_tavily import TavilySearch
# Configuration - set to False to disable detailed logging
ENABLE_DETAILED_LOGGING = True
# Setup logging with rotation (7 days max)
if ENABLE_DETAILED_LOGGING:
# Create formatter
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
# Setup console handler
console_handler = logging.StreamHandler()
console_handler.setFormatter(formatter)
# Setup rotating file handler (7 days, daily rotation)
file_handler = logging.handlers.TimedRotatingFileHandler(
'agent.log',
when='midnight',
interval=1,
backupCount=7, # Keep 7 days of logs
encoding='utf-8'
)
file_handler.setFormatter(formatter)
# Configure root logger
logging.basicConfig(
level=logging.INFO,
handlers=[console_handler, file_handler]
)
else:
logging.basicConfig(level=logging.WARNING)
logger = logging.getLogger(__name__)
# Configuration from environment variables
llm_ip = os.environ.get('public_ip')
llm_port = os.environ.get('port')
llm_key = os.environ.get('api_key')
llm_model = os.environ.get('model')
# Tavily API configuration
tavily_key = os.environ.get('tavily_key', '')
if ENABLE_DETAILED_LOGGING:
logger.info(f"Tavily API key present: {bool(tavily_key)}")
if tavily_key:
logger.info(f"Tavily API key length: {len(tavily_key)}")
else:
logger.warning("No Tavily API key found in environment variables")
# Tavily search tool integration
class ReactAgentChat:
def __init__(self, ip: str, port: str, api_key: str, model: str):
self.ip = ip
self.port = port
self.api_key = api_key
self.model = model
self.agent = None
self._setup_agent()
def _setup_agent(self):
"""Initialize the LangGraph ReAct agent"""
try:
if ENABLE_DETAILED_LOGGING:
logger.info(f"=== SETTING UP AGENT ===")
logger.info(f"LLM URL: http://{self.ip}:{self.port}/v1")
logger.info(f"Model: {self.model}")
# Create OpenAI-compatible model
llm = ChatOpenAI(
base_url=f"http://{self.ip}:{self.port}/v1",
api_key=self.api_key,
model=self.model,
temperature=0.7
)
if ENABLE_DETAILED_LOGGING:
logger.info("LLM created successfully")
# Define tools - use Tavily search API with graceful error handling
if tavily_key:
if ENABLE_DETAILED_LOGGING:
logger.info("Setting up Tavily search tool")
try:
# Create custom wrapper for Tavily with error handling
@tool
def web_search(query: str) -> str:
"""Search the web for current information about any topic."""
try:
tavily_tool = TavilySearch(
tavily_api_key=tavily_key,
max_results=5,
topic="general",
include_answer=True,
search_depth="advanced"
)
result = tavily_tool.invoke({"query": query})
if ENABLE_DETAILED_LOGGING:
logger.info(f"Tavily search successful for query: {query}")
return result
except Exception as e:
error_str = str(e).lower()
if ENABLE_DETAILED_LOGGING:
logger.error(f"Tavily search failed for query '{query}': {e}")
logger.error(f"Exception type: {type(e).__name__}")
import traceback
logger.error(f"Full traceback: {traceback.format_exc()}")
# Check for rate limit or quota issues
if any(keyword in error_str for keyword in ['rate limit', 'quota', 'limit exceeded', 'usage limit', 'billing']):
if ENABLE_DETAILED_LOGGING:
logger.warning(f"Tavily rate limit/quota exceeded: {e}")
return "I can't search the web right now due to rate limits."
else:
if ENABLE_DETAILED_LOGGING:
logger.error(f"Tavily API error: {e}")
return f"I can't search the web right now. Error: {str(e)[:100]}"
search_tool = web_search
if ENABLE_DETAILED_LOGGING:
logger.info("Tavily search tool wrapper created successfully")
except Exception as e:
if ENABLE_DETAILED_LOGGING:
logger.error(f"Failed to create Tavily tool wrapper: {e}")
# Fallback tool
@tool
def no_search(query: str) -> str:
"""Search tool unavailable."""
return "I can't search the web right now."
search_tool = no_search
else:
if ENABLE_DETAILED_LOGGING:
logger.warning("No Tavily API key found, creating fallback tool")
@tool
def no_search(query: str) -> str:
"""Search tool unavailable."""
if ENABLE_DETAILED_LOGGING:
logger.error("Search attempted but no Tavily API key configured")
return "I can't search the web right now."
search_tool = no_search
tools = [search_tool]
if ENABLE_DETAILED_LOGGING:
logger.info(f"Tools defined: {[tool.name for tool in tools]}")
# Bind tools to the model
model_with_tools = llm.bind_tools(tools)
if ENABLE_DETAILED_LOGGING:
logger.info("Tools bound to model")
# Create the ReAct agent
self.agent = create_react_agent(model_with_tools, tools)
if ENABLE_DETAILED_LOGGING:
logger.info("ReAct agent created successfully")
except Exception as e:
logger.error(f"=== AGENT SETUP ERROR ===")
logger.error(f"Failed to setup agent: {e}")
import traceback
logger.error(f"Traceback: {traceback.format_exc()}")
raise e
def update_config(self, ip: str, port: str, api_key: str, model: str):
"""Update LLM configuration"""
if (ip != self.ip or port != self.port or
api_key != self.api_key or model != self.model):
self.ip = ip
self.port = port
self.api_key = api_key
self.model = model
self._setup_agent()
def chat(self, message: str, history: List[List[str]]) -> str:
"""Generate chat response using ReAct agent"""
try:
if not self.agent:
return "Error: Agent not initialized"
if ENABLE_DETAILED_LOGGING:
logger.info(f"=== USER INPUT ===")
logger.info(f"Message: {message}")
logger.info(f"History length: {len(history)}")
# Convert history to messages for context handling
messages = []
for user_msg, assistant_msg in history:
messages.append(HumanMessage(content=user_msg))
if assistant_msg: # Only add if assistant responded
from langchain_core.messages import AIMessage
messages.append(AIMessage(content=assistant_msg))
# Add current message
messages.append(HumanMessage(content=message))
# Invoke the agent
if ENABLE_DETAILED_LOGGING:
logger.info(f"=== INVOKING AGENT ===")
logger.info(f"Total messages in history: {len(messages)}")
response = self.agent.invoke({"messages": messages})
if ENABLE_DETAILED_LOGGING:
logger.info(f"=== AGENT RESPONSE ===")
logger.info(f"Full response: {response}")
logger.info(f"Number of messages: {len(response.get('messages', []))}")
# Log each message in the response
for i, msg in enumerate(response.get("messages", [])):
logger.info(f"Message {i}: Type={type(msg).__name__}, Content={getattr(msg, 'content', 'No content')}")
# Extract the final response
final_message = response["messages"][-1].content
if ENABLE_DETAILED_LOGGING:
logger.info(f"=== FINAL MESSAGE ===")
logger.info(f"Final message: {final_message}")
return final_message
except Exception as e:
error_msg = f"Agent error: {str(e)}"
logger.error(f"=== AGENT ERROR ===")
logger.error(f"Error: {e}")
logger.error(f"Error type: {type(e)}")
import traceback
logger.error(f"Traceback: {traceback.format_exc()}")
return error_msg
# Global agent instance
react_agent = ReactAgentChat(llm_ip, llm_port, llm_key, llm_model)
def generate_response(message: str, history: List[List[str]], system_prompt: str,
max_tokens: int, ip: str, port: str, api_key: str, model: str):
"""Generate response using ReAct agent"""
global react_agent
try:
# Update agent configuration if changed
react_agent.update_config(ip, port, api_key, model)
# Generate response
response = react_agent.chat(message, history)
# Stream the response word by word for better UX
words = response.split()
current_response = ""
for word in words:
current_response += word + " "
yield current_response.strip()
except Exception as e:
error_msg = f"Error: {str(e)}"
logger.error(error_msg)
yield error_msg
# Create Gradio ChatInterface
chatbot = gr.ChatInterface(
generate_response,
chatbot=gr.Chatbot(
avatar_images=[
None,
"https://cdn-avatars.huggingface.co/v1/production/uploads/64e6d37e02dee9bcb9d9fa18/o_HhUnXb_PgyYlqJ6gfEO.png"
],
height="64vh"
),
additional_inputs=[
gr.Textbox(
"You are a helpful AI assistant with web search capabilities.",
label="System Prompt",
lines=2
),
gr.Slider(50, 2048, label="Max Tokens", value=512,
info="Maximum number of tokens in the response"),
gr.Textbox(llm_ip, label="LLM IP Address",
info="IP address of the OpenAI-compatible LLM server"),
gr.Textbox(llm_port, label="LLM Port",
info="Port of the LLM server"),
gr.Textbox(llm_key, label="API Key", type="password",
info="API key for the LLM server"),
gr.Textbox(llm_model, label="Model Name",
info="Name of the model to use"),
],
title="🤖 LangGraph ReAct Agent with Tavily Search",
description="Chat with a LangGraph ReAct agent that can search the web using Tavily. Ask about current events, research topics, or any questions that require up-to-date information!",
theme="finlaymacklon/smooth_slate"
)
if __name__ == "__main__":
chatbot.queue().launch() |