Spaces:
Running
Running
File size: 6,428 Bytes
99220ed 6b21734 61f283f 6b21734 9c6fa4d 225bf42 99220ed 225bf42 99220ed 6b21734 99220ed 6b21734 99220ed 6b21734 99220ed 6b21734 99220ed 6b21734 99220ed 6b21734 225bf42 6b21734 99220ed 6b21734 99220ed 6b21734 c64f061 56c280b 6b21734 56c280b 6b21734 99220ed ef13efd 6b21734 56c280b 99220ed 6b21734 99220ed 6b21734 225bf42 6b21734 99220ed 225bf42 99220ed 6b21734 67293c8 ef13efd 3982c1e 67293c8 6b21734 ef13efd 3982c1e 67293c8 3982c1e 99220ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import streamlit as st
from transformers import T5ForConditionalGeneration, T5Tokenizer
import spacy
import nltk
from sklearn.feature_extraction.text import TfidfVectorizer
from rake_nltk import Rake
import pandas as pd
from fpdf import FPDF
import wikipediaapi
#from b import b
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('brown')
from nltk.tokenize import sent_tokenize
# Load spaCy model
nlp = spacy.load("en_core_web_sm")
# Initialize Wikipedia API with a user agent
user_agent = 'QGen/1.0 (channingfisher7@gmail.com)'
wiki_wiki = wikipediaapi.Wikipedia(user_agent= user_agent,language='en')
# Load T5 model and tokenizer
model_name = "DevBM/t5-large-squad"
model = T5ForConditionalGeneration.from_pretrained(model_name)
tokenizer = T5Tokenizer.from_pretrained(model_name)
# Function to extract keywords using combined techniques
def extract_keywords(text):
# Use RAKE
rake = Rake()
rake.extract_keywords_from_text(text)
rake_keywords = set(rake.get_ranked_phrases())
# Use spaCy for NER and POS tagging
doc = nlp(text)
spacy_keywords = set([ent.text for ent in doc.ents])
spacy_keywords.update([token.text for token in doc if token.pos_ in ["NOUN", "PROPN", "VERB", "ADJ"]])
# Use TF-IDF
vectorizer = TfidfVectorizer(stop_words='english')
X = vectorizer.fit_transform([text])
tfidf_keywords = set(vectorizer.get_feature_names_out())
# Combine all keywords
combined_keywords = rake_keywords.union(spacy_keywords).union(tfidf_keywords)
return list(combined_keywords)
# Function to map keywords to sentences with customizable context window size
def map_keywords_to_sentences(text, keywords, context_window_size):
sentences = sent_tokenize(text)
keyword_sentence_mapping = {}
for keyword in keywords:
for i, sentence in enumerate(sentences):
if keyword in sentence:
# Combine current sentence with surrounding sentences for context
start = max(0, i - context_window_size)
end = min(len(sentences), i + context_window_size + 1)
context = ' '.join(sentences[start:end])
if keyword not in keyword_sentence_mapping:
keyword_sentence_mapping[keyword] = context
else:
keyword_sentence_mapping[keyword] += ' ' + context
return keyword_sentence_mapping
# Function to perform entity linking using Wikipedia API
def entity_linking(keyword):
page = wiki_wiki.page(keyword)
if page.exists():
return page.fullurl
return None
# Function to generate questions using beam search
def generate_question(context, answer, num_beams=5):
input_text = f"<context> {context} <answer> {answer}"
input_ids = tokenizer.encode(input_text, return_tensors='pt')
outputs = model.generate(input_ids, num_beams=num_beams, early_stopping=True)
question = tokenizer.decode(outputs[0], skip_special_tokens=True)
return question
# Function to export questions to CSV
def export_to_csv(data):
df = pd.DataFrame(data, columns=["Context", "Answer", "Question"])
csv = df.to_csv(index=False,encoding='utf-8')
return csv
# Function to export questions to PDF
def export_to_pdf(data):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
for context, answer, question in data:
pdf.multi_cell(0, 10, f"Context: {context}")
pdf.multi_cell(0, 10, f"Answer: {answer}")
pdf.multi_cell(0, 10, f"Question: {question}")
pdf.ln(10)
# pdf.output("questions.pdf")
return pdf.output(name='questions.pdf',dest='S').encode('latin1')
# Streamlit interface
st.title(":blue[Question Generator from Text]")
text = st.text_area("Enter text here:", value="Joe Biden, the current US president is on a weak wicket going in for his reelection later this November against former President Donald Trump.")
# Customization options
num_beams = st.slider("Select number of beams for question generation", min_value=1, max_value=10, value=5)
context_window_size = st.slider("Select context window size (number of sentences before and after)", min_value=1, max_value=5, value=1)
num_questions = st.slider("Select number of questions to generate", min_value=1, max_value=1000, value=5)
question_complexity = st.selectbox("Select question complexity", ["Simple", "Intermediate", "Complex"])
downlaod_csv = st.toggle('Download CSV',value=True)
download_pdf = st.toggle('Download PDF',value=True)
if st.button("Generate Questions"):
if text:
keywords = extract_keywords(text)
keyword_sentence_mapping = map_keywords_to_sentences(text, keywords, context_window_size)
st.subheader("Generated Questions:")
data = []
for i, (keyword, context) in enumerate(keyword_sentence_mapping.items()):
if i >= num_questions:
break
linked_entity = entity_linking(keyword)
question = generate_question(context, keyword, num_beams=num_beams)
st.write(f"**Context:** {context}")
st.write(f"**Answer:** {keyword}")
st.write(f"**Question:** {question}")
if linked_entity:
st.write(f"**Entity Link:** {linked_entity}")
st.write("---")
data.append((context, keyword, question))
# Export buttons
if data is not None:
# if st.button("Export to CSV"):
# if downlaod_csv:
# csv_data = export_to_csv(data)
# st.success("Questions exported to questions.csv")
# st.download_button(label="Download CSV", data=csv_data, file_name='questions.csv', mime='text/csv')
csv_data = export_to_csv(data)
st.download_button(label="Download CSV", data=csv_data, file_name='questions.csv', mime='text/csv')
# if st.button("Export to PDF"):
# if download_pdf:
# pdf_data = export_to_pdf(data)
# st.success("Questions exported to questions.pdf")
# st.download_button(label="Download PDF", data=pdf_data, file_name='questions.pdf', mime='application/pdf')
pdf_data = export_to_pdf(data)
st.download_button(label="Download PDF", data=pdf_data, file_name='questions.pdf', mime='application/pdf')
else:
st.write("Please enter some text to generate questions.")
|