File size: 1,709 Bytes
87a77d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from ultralytics import YOLO
import supervision as sv


def parse_detection(detections):
    parsed_rows = []
    for i in range(len(detections.xyxy)):
        x_min = float(detections.xyxy[i][0])
        y_min = float(detections.xyxy[i][1])
        x_max = float(detections.xyxy[i][2])
        y_max = float(detections.xyxy[i][3])

        width = int(x_max - x_min)
        height = int(y_max - y_min)

        row = {
            "x": int(y_min),
            "y": int(x_min),
            "width": width,
            "height": height,
            "class_id": ""
            if detections.class_id is None
            else int(detections.class_id[i]),
            "confidence": ""
            if detections.confidence is None
            else float(detections.confidence[i]),
            "tracker_id": ""
            if detections.tracker_id is None
            else int(detections.tracker_id[i]),
        }

        if hasattr(detections, "data"):
            for key, value in detections.data.items():
                if key == "class_name":
                    key = "class"
                row[key] = (
                    str(value[i])
                    if hasattr(value, "__getitem__") and value.ndim != 0
                    else str(value)
                )
        parsed_rows.append(row)
    return parsed_rows

model = YOLO("models/best_v2.pt", task="detect")
results = model(["data/IMG_0050.jpg"])[0]
width, height = results.orig_shape[1], results.orig_shape[0]
print(results.orig_shape)
print(results.speed)
output = sv.Detections.from_ultralytics(results)
output = parse_detection(output)
parse_result = {'predictions': output, 'image': {'width': width, 'height': height}}
print(parse_result)