vumichien's picture
Update app.py
b5cd6d0
import gradio as gr
import os
import openai
import json
import tiktoken
import pandas as pd
openai.api_key = os.environ["OPENAI_API_KEY"]
prompt_templates = {"Default ChatGPT": ""}
def num_tokens_from_messages(messages, model="gpt-3.5-turbo"):
"""Returns the number of tokens used by a list of messages."""
try:
encoding = tiktoken.encoding_for_model(model)
except KeyError:
encoding = tiktoken.get_encoding("cl100k_base")
if model == "gpt-3.5-turbo":
num_tokens = 0
for message in messages:
num_tokens += 4 # every message follows <im_start>{role/name}\n{content}<im_end>\n
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name": # if there's a name, the role is omitted
num_tokens += -1 # role is always required and always 1 token
num_tokens += 2 # every reply is primed with <im_start>assistant
return num_tokens
else:
raise NotImplementedError(f"""num_tokens_from_messages() is not presently implemented for model {model}.
See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.""")
def get_empty_state():
return {"total_tokens": 0, "messages": [], "threshold": 0}
def download_prompt_templates():
df = pd.read_csv('prompts.csv', encoding='unicode_escape')
prompt_templates.update(dict(zip(df['act'], df['prompt'])))
choices = list(prompt_templates.keys())
return gr.update(value=choices[0], choices=choices)
def on_token_change(user_token):
openai.api_key = user_token or os.environ.get("OPENAI_API_KEY")
def on_prompt_template_change(prompt_template):
if not isinstance(prompt_template, str): return
return prompt_templates[prompt_template]
def submit_message(prompt, prompt_template, temperature, max_tokens, state):
history = state['messages']
if not prompt:
return gr.update(value='', visible=state['total_tokens'] < 1_000), [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)], f"Total tokens used: {state['total_tokens']} / 4090", state
prompt_template = prompt_templates[prompt_template]
print(prompt_template)
system_prompt = []
if prompt_template:
system_prompt = [{ "role": "system", "content": prompt_template}]
prompt_msg = {"role": "user", "content": prompt }
# check length token message
messages = system_prompt + history + [prompt_msg]
history_id = 2
while num_tokens_from_messages(messages) >= 4090:
messages = system_prompt + history[history_id:] + [prompt_msg]
history_id +=2
state['threshold'] +=1
if history_id > len(history):
break
try:
completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=messages, temperature=temperature, max_tokens=max_tokens)
history.append(prompt_msg)
history.append(completion.choices[0].message.to_dict())
state['total_tokens'] += completion['usage']['total_tokens']
except Exception as e:
history.append(prompt_msg)
history.append({
"role": "system",
"content": f"Error: {e}"
})
total_tokens_used_msg = f"Total tokens used: {state['total_tokens']} / 4090. "
chat_messages = [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)]
if state['threshold'] >= 3:
input_visibility = False
total_tokens_used_msg += "Reach the limit of this conversation. Start the new one"
else:
input_visibility = True
return gr.update(value='', visible=input_visibility), chat_messages, total_tokens_used_msg, state
def clear_conversation():
return gr.update(value=None, visible=True), None, "", get_empty_state()
css = """
#col-container {max-width: 80%; margin-left: auto; margin-right: auto;}
#chatbox {min-height: 400px;}
#header {text-align: center;}
#prompt_template_preview {padding: 1em; border-width: 1px; border-style: solid; border-color: #e0e0e0; border-radius: 4px;}
#total_tokens_str {text-align: right; font-size: 0.8em; color: #666; height: 1em;}
#label {font-size: 0.8em; padding: 0.5em; margin: 0;}
"""
with gr.Blocks(css=css) as demo:
state = gr.State(get_empty_state())
with gr.Column(elem_id="col-container"):
gr.Markdown("""## OpenAI ChatGPT with awesome prompts
Current limit is 4090 tokens per conversation<br>
Input your text with a custom insruction (If need).""",
elem_id="header")
with gr.Row():
with gr.Column():
chatbot = gr.Chatbot(elem_id="chatbox")
input_message = gr.Textbox(show_label=False, placeholder="Enter text and press enter", visible=True).style(container=False)
total_tokens_str = gr.Markdown(elem_id="total_tokens_str")
btn_clear_conversation = gr.Button("🔃 Start New Conversation")
with gr.Column():
prompt_template = gr.Dropdown(label="Set a custom insruction for the chatbot:", choices=list(prompt_templates.keys()))
prompt_template_preview = gr.Markdown(elem_id="prompt_template_preview")
with gr.Accordion("Advanced parameters", open=False):
temperature = gr.Slider(minimum=0, maximum=2.0, value=0.7, step=0.1, interactive=True, label="Temperature (higher = more creative/chaotic)")
max_tokens = gr.Slider(minimum=100, maximum=4096, value=1000, step=1, interactive=True, label="Max tokens per response")
input_message.submit(submit_message, [input_message, prompt_template, temperature, max_tokens, state], [input_message, chatbot, total_tokens_str, state])
btn_clear_conversation.click(clear_conversation, [], [input_message, chatbot, total_tokens_str, state])
prompt_template.change(on_prompt_template_change, inputs=[prompt_template], outputs=[prompt_template_preview])
demo.load(download_prompt_templates, inputs=None, outputs=[prompt_template])
# demo.launch(debug=True, height='800px', auth=("admin", "dtm1234"))
demo.launch(debug=True, height='800px')