File size: 6,337 Bytes
107665c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5cd6d0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import gradio as gr
import os
import openai
import json
import tiktoken
import pandas as pd

openai.api_key = os.environ["OPENAI_API_KEY"]
prompt_templates = {"Default ChatGPT": ""}

def num_tokens_from_messages(messages, model="gpt-3.5-turbo"):
    """Returns the number of tokens used by a list of messages."""
    try:
        encoding = tiktoken.encoding_for_model(model)
    except KeyError:
        encoding = tiktoken.get_encoding("cl100k_base")
    if model == "gpt-3.5-turbo": 
        num_tokens = 0
        for message in messages:
            num_tokens += 4  # every message follows <im_start>{role/name}\n{content}<im_end>\n
            for key, value in message.items():
                num_tokens += len(encoding.encode(value))
                if key == "name":  # if there's a name, the role is omitted
                    num_tokens += -1  # role is always required and always 1 token
        num_tokens += 2  # every reply is primed with <im_start>assistant
        return num_tokens
    else:
        raise NotImplementedError(f"""num_tokens_from_messages() is not presently implemented for model {model}. 
        See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.""")


def get_empty_state():
    return {"total_tokens": 0, "messages": [], "threshold": 0}

def download_prompt_templates():
    df = pd.read_csv('prompts.csv', encoding='unicode_escape')
    prompt_templates.update(dict(zip(df['act'], df['prompt'])))
    choices = list(prompt_templates.keys())
    return gr.update(value=choices[0], choices=choices)

def on_token_change(user_token):
    openai.api_key = user_token or os.environ.get("OPENAI_API_KEY")

def on_prompt_template_change(prompt_template):
    if not isinstance(prompt_template, str): return
    return prompt_templates[prompt_template]

def submit_message(prompt, prompt_template, temperature, max_tokens, state):

    history = state['messages']

    if not prompt:
        return gr.update(value='', visible=state['total_tokens'] < 1_000), [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)], f"Total tokens used: {state['total_tokens']} / 4090", state
    
    prompt_template = prompt_templates[prompt_template]
    print(prompt_template)
    system_prompt = []
    if prompt_template:
        system_prompt = [{ "role": "system", "content": prompt_template}]

    prompt_msg = {"role": "user", "content": prompt }
    
    # check length token message
    messages = system_prompt + history + [prompt_msg]
    history_id = 2
    while num_tokens_from_messages(messages) >= 4090:
        messages = system_prompt + history[history_id:] + [prompt_msg]
        history_id +=2
        state['threshold'] +=1
        if history_id > len(history):
            break
    try:
        completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=messages, temperature=temperature, max_tokens=max_tokens)
        history.append(prompt_msg)
        history.append(completion.choices[0].message.to_dict())

        state['total_tokens'] += completion['usage']['total_tokens']
    
    except Exception as e:
        history.append(prompt_msg)
        history.append({
            "role": "system",
            "content": f"Error: {e}"
        })

    total_tokens_used_msg = f"Total tokens used: {state['total_tokens']} / 4090. "
    chat_messages = [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)]

    if state['threshold'] >= 3:
        input_visibility = False
        total_tokens_used_msg += "Reach the limit of this conversation. Start the new one"
    else:
        input_visibility = True

    return gr.update(value='', visible=input_visibility), chat_messages, total_tokens_used_msg, state

def clear_conversation():
    return gr.update(value=None, visible=True), None, "", get_empty_state()

css = """
      #col-container {max-width: 80%; margin-left: auto; margin-right: auto;}
      #chatbox {min-height: 400px;}
      #header {text-align: center;}
      #prompt_template_preview {padding: 1em; border-width: 1px; border-style: solid; border-color: #e0e0e0; border-radius: 4px;}
      #total_tokens_str {text-align: right; font-size: 0.8em; color: #666; height: 1em;}
      #label {font-size: 0.8em; padding: 0.5em; margin: 0;}
      """

with gr.Blocks(css=css) as demo:
    
    state = gr.State(get_empty_state())


    with gr.Column(elem_id="col-container"):
        gr.Markdown("""## OpenAI ChatGPT with awesome prompts
                    Current limit is 4090 tokens per conversation<br>
                    Input your text with a custom insruction (If need).""",
                    elem_id="header")

        with gr.Row():
            with gr.Column():
                chatbot = gr.Chatbot(elem_id="chatbox")
                input_message = gr.Textbox(show_label=False, placeholder="Enter text and press enter", visible=True).style(container=False)
                total_tokens_str = gr.Markdown(elem_id="total_tokens_str")
                btn_clear_conversation = gr.Button("🔃 Start New Conversation")
            with gr.Column():
                prompt_template = gr.Dropdown(label="Set a custom insruction for the chatbot:", choices=list(prompt_templates.keys()))
                prompt_template_preview = gr.Markdown(elem_id="prompt_template_preview")

                with gr.Accordion("Advanced parameters", open=False):
                    temperature = gr.Slider(minimum=0, maximum=2.0, value=0.7, step=0.1, interactive=True, label="Temperature (higher = more creative/chaotic)")
                    max_tokens = gr.Slider(minimum=100, maximum=4096, value=1000, step=1, interactive=True, label="Max tokens per response")

    input_message.submit(submit_message, [input_message, prompt_template, temperature, max_tokens, state], [input_message, chatbot, total_tokens_str, state])
    btn_clear_conversation.click(clear_conversation, [], [input_message, chatbot, total_tokens_str, state])
    prompt_template.change(on_prompt_template_change, inputs=[prompt_template], outputs=[prompt_template_preview])

    demo.load(download_prompt_templates, inputs=None, outputs=[prompt_template])


# demo.launch(debug=True, height='800px', auth=("admin", "dtm1234"))
demo.launch(debug=True, height='800px')