import gradio as gr import os import openai import json import tiktoken import pandas as pd openai.api_key = os.environ["OPENAI_API_KEY"] prompt_templates = {"Default ChatGPT": ""} def num_tokens_from_messages(messages, model="gpt-3.5-turbo"): """Returns the number of tokens used by a list of messages.""" try: encoding = tiktoken.encoding_for_model(model) except KeyError: encoding = tiktoken.get_encoding("cl100k_base") if model == "gpt-3.5-turbo": num_tokens = 0 for message in messages: num_tokens += 4 # every message follows {role/name}\n{content}\n for key, value in message.items(): num_tokens += len(encoding.encode(value)) if key == "name": # if there's a name, the role is omitted num_tokens += -1 # role is always required and always 1 token num_tokens += 2 # every reply is primed with assistant return num_tokens else: raise NotImplementedError(f"""num_tokens_from_messages() is not presently implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.""") def get_empty_state(): return {"total_tokens": 0, "messages": [], "threshold": 0} def download_prompt_templates(): df = pd.read_csv('prompts.csv', encoding='unicode_escape') prompt_templates.update(dict(zip(df['act'], df['prompt']))) choices = list(prompt_templates.keys()) return gr.update(value=choices[0], choices=choices) def on_token_change(user_token): openai.api_key = user_token or os.environ.get("OPENAI_API_KEY") def on_prompt_template_change(prompt_template): if not isinstance(prompt_template, str): return return prompt_templates[prompt_template] def submit_message(prompt, prompt_template, temperature, max_tokens, state): history = state['messages'] if not prompt: return gr.update(value='', visible=state['total_tokens'] < 1_000), [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)], f"Total tokens used: {state['total_tokens']} / 4090", state prompt_template = prompt_templates[prompt_template] print(prompt_template) system_prompt = [] if prompt_template: system_prompt = [{ "role": "system", "content": prompt_template}] prompt_msg = {"role": "user", "content": prompt } # check length token message messages = system_prompt + history + [prompt_msg] history_id = 2 while num_tokens_from_messages(messages) >= 4090: messages = system_prompt + history[history_id:] + [prompt_msg] history_id +=2 state['threshold'] +=1 if history_id > len(history): break try: completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=messages, temperature=temperature, max_tokens=max_tokens) history.append(prompt_msg) history.append(completion.choices[0].message.to_dict()) state['total_tokens'] += completion['usage']['total_tokens'] except Exception as e: history.append(prompt_msg) history.append({ "role": "system", "content": f"Error: {e}" }) total_tokens_used_msg = f"Total tokens used: {state['total_tokens']} / 4090. " chat_messages = [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)] if state['threshold'] >= 3: input_visibility = False total_tokens_used_msg += "Reach the limit of this conversation. Start the new one" else: input_visibility = True return gr.update(value='', visible=input_visibility), chat_messages, total_tokens_used_msg, state def clear_conversation(): return gr.update(value=None, visible=True), None, "", get_empty_state() css = """ #col-container {max-width: 80%; margin-left: auto; margin-right: auto;} #chatbox {min-height: 400px;} #header {text-align: center;} #prompt_template_preview {padding: 1em; border-width: 1px; border-style: solid; border-color: #e0e0e0; border-radius: 4px;} #total_tokens_str {text-align: right; font-size: 0.8em; color: #666; height: 1em;} #label {font-size: 0.8em; padding: 0.5em; margin: 0;} """ with gr.Blocks(css=css) as demo: state = gr.State(get_empty_state()) with gr.Column(elem_id="col-container"): gr.Markdown("""## OpenAI ChatGPT with awesome prompts Current limit is 4090 tokens per conversation
Input your text with a custom insruction (If need).""", elem_id="header") with gr.Row(): with gr.Column(): chatbot = gr.Chatbot(elem_id="chatbox") input_message = gr.Textbox(show_label=False, placeholder="Enter text and press enter", visible=True).style(container=False) total_tokens_str = gr.Markdown(elem_id="total_tokens_str") btn_clear_conversation = gr.Button("🔃 Start New Conversation") with gr.Column(): prompt_template = gr.Dropdown(label="Set a custom insruction for the chatbot:", choices=list(prompt_templates.keys())) prompt_template_preview = gr.Markdown(elem_id="prompt_template_preview") with gr.Accordion("Advanced parameters", open=False): temperature = gr.Slider(minimum=0, maximum=2.0, value=0.7, step=0.1, interactive=True, label="Temperature (higher = more creative/chaotic)") max_tokens = gr.Slider(minimum=100, maximum=4096, value=1000, step=1, interactive=True, label="Max tokens per response") input_message.submit(submit_message, [input_message, prompt_template, temperature, max_tokens, state], [input_message, chatbot, total_tokens_str, state]) btn_clear_conversation.click(clear_conversation, [], [input_message, chatbot, total_tokens_str, state]) prompt_template.change(on_prompt_template_change, inputs=[prompt_template], outputs=[prompt_template_preview]) demo.load(download_prompt_templates, inputs=None, outputs=[prompt_template]) # demo.launch(debug=True, height='800px', auth=("admin", "dtm1234")) demo.launch(debug=True, height='800px')