File size: 9,105 Bytes
447ebeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import json
import os
import sys
from datetime import datetime
from unittest.mock import AsyncMock

sys.path.insert(
    0, os.path.abspath("../..")
)  # Adds the parent directory to the system-path

import pytest
import litellm
from litellm.integrations.opentelemetry import OpenTelemetry, OpenTelemetryConfig, Span
import asyncio
import logging
from opentelemetry.sdk.trace.export.in_memory_span_exporter import InMemorySpanExporter
from litellm._logging import verbose_logger
from litellm.proxy._types import SpanAttributes

verbose_logger.setLevel(logging.DEBUG)

EXPECTED_SPAN_NAMES = ["litellm_request", "raw_gen_ai_request"]
exporter = InMemorySpanExporter()


@pytest.mark.asyncio
@pytest.mark.parametrize("streaming", [True, False])
async def test_async_otel_callback(streaming):
    litellm.set_verbose = True

    litellm.callbacks = [OpenTelemetry(config=OpenTelemetryConfig(exporter=exporter))]

    response = await litellm.acompletion(
        model="gpt-3.5-turbo",
        messages=[{"role": "user", "content": "hi"}],
        temperature=0.1,
        user="OTEL_USER",
        stream=streaming,
    )

    if streaming is True:
        async for chunk in response:
            print("chunk", chunk)

    await asyncio.sleep(4)
    spans = exporter.get_finished_spans()
    print("spans", spans)
    assert len(spans) == 2

    _span_names = [span.name for span in spans]
    print("recorded span names", _span_names)
    assert set(_span_names) == set(EXPECTED_SPAN_NAMES)

    # print the value of a span
    for span in spans:
        print("span name", span.name)
        print("span attributes", span.attributes)

        if span.name == "litellm_request":
            validate_litellm_request(span)
            # Additional specific checks
            assert span._attributes["gen_ai.request.model"] == "gpt-3.5-turbo"
            assert span._attributes["gen_ai.system"] == "openai"
            assert span._attributes["gen_ai.request.temperature"] == 0.1
            assert span._attributes["llm.is_streaming"] == str(streaming)
            assert span._attributes["llm.user"] == "OTEL_USER"
        elif span.name == "raw_gen_ai_request":
            if streaming is True:
                validate_raw_gen_ai_request_openai_streaming(span)
            else:
                validate_raw_gen_ai_request_openai_non_streaming(span)

    # clear in memory exporter
    exporter.clear()


def validate_litellm_request(span):
    expected_attributes = [
        "gen_ai.request.model",
        "gen_ai.system",
        "gen_ai.request.temperature",
        "llm.is_streaming",
        "llm.user",
        "gen_ai.response.id",
        "gen_ai.response.model",
        "llm.usage.total_tokens",
        "gen_ai.usage.completion_tokens",
        "gen_ai.usage.prompt_tokens",
    ]

    # get the str of all the span attributes
    print("span attributes", span._attributes)

    for attr in expected_attributes:
        value = span._attributes[attr]
        print("value", value)
        assert value is not None, f"Attribute {attr} has None value"


def validate_raw_gen_ai_request_openai_non_streaming(span):
    expected_attributes = [
        "llm.openai.messages",
        "llm.openai.temperature",
        "llm.openai.user",
        "llm.openai.extra_body",
        "llm.openai.id",
        "llm.openai.choices",
        "llm.openai.created",
        "llm.openai.model",
        "llm.openai.object",
        "llm.openai.service_tier",
        "llm.openai.system_fingerprint",
        "llm.openai.usage",
    ]

    print("span attributes", span._attributes)
    for attr in span._attributes:
        print(attr)

    for attr in expected_attributes:
        assert span._attributes[attr] is not None, f"Attribute {attr} has None"


def validate_raw_gen_ai_request_openai_streaming(span):
    expected_attributes = [
        "llm.openai.messages",
        "llm.openai.temperature",
        "llm.openai.user",
        "llm.openai.extra_body",
        "llm.openai.model",
    ]

    print("span attributes", span._attributes)
    for attr in span._attributes:
        print(attr)

    for attr in expected_attributes:
        assert span._attributes[attr] is not None, f"Attribute {attr} has None"


@pytest.mark.parametrize(
    "model",
    ["anthropic/claude-3-opus-20240229"],
)
@pytest.mark.flaky(retries=6, delay=2)
def test_completion_claude_3_function_call_with_otel(model):
    litellm.set_verbose = True

    litellm.callbacks = [OpenTelemetry(config=OpenTelemetryConfig(exporter=exporter))]
    tools = [
        {
            "type": "function",
            "function": {
                "name": "get_current_weather",
                "description": "Get the current weather in a given location",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "location": {
                            "type": "string",
                            "description": "The city and state, e.g. San Francisco, CA",
                        },
                        "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
                    },
                    "required": ["location"],
                },
            },
        }
    ]
    messages = [
        {
            "role": "user",
            "content": "What's the weather like in Boston today in Fahrenheit?",
        }
    ]
    try:
        # test without max tokens
        response = litellm.completion(
            model=model,
            messages=messages,
            tools=tools,
            tool_choice={
                "type": "function",
                "function": {"name": "get_current_weather"},
            },
            drop_params=True,
        )

        print("response from LiteLLM", response)
    except litellm.InternalServerError:
        pass
    except Exception as e:
        pytest.fail(f"Error occurred: {e}")
    finally:
        # clear in memory exporter
        exporter.clear()


@pytest.mark.asyncio
@pytest.mark.parametrize("streaming", [True, False])
@pytest.mark.parametrize("global_redact", [True, False])
async def test_awesome_otel_with_message_logging_off(streaming, global_redact):
    """
    No content should be logged when message logging is off

    tests when litellm.turn_off_message_logging is set to True
    tests when OpenTelemetry(message_logging=False) is set
    """
    litellm.set_verbose = True
    litellm.callbacks = [OpenTelemetry(config=OpenTelemetryConfig(exporter=exporter))]
    if global_redact is False:
        otel_logger = OpenTelemetry(
            message_logging=False, config=OpenTelemetryConfig(exporter="console")
        )
    else:
        # use global redaction
        litellm.turn_off_message_logging = True
        otel_logger = OpenTelemetry(config=OpenTelemetryConfig(exporter="console"))

    litellm.callbacks = [otel_logger]
    litellm.success_callback = []
    litellm.failure_callback = []

    response = await litellm.acompletion(
        model="gpt-3.5-turbo",
        messages=[{"role": "user", "content": "hi"}],
        mock_response="hi",
        stream=streaming,
    )
    print("response", response)

    if streaming is True:
        async for chunk in response:
            print("chunk", chunk)

    await asyncio.sleep(1)
    spans = exporter.get_finished_spans()
    print("spans", spans)
    assert len(spans) == 1

    _span = spans[0]
    print("span attributes", _span.attributes)

    validate_redacted_message_span_attributes(_span)

    # clear in memory exporter
    exporter.clear()

    if global_redact is True:
        litellm.turn_off_message_logging = False


def validate_redacted_message_span_attributes(span):
    expected_attributes = [
        "gen_ai.request.model",
        "gen_ai.system",
        "llm.is_streaming",
        "llm.request.type",
        "gen_ai.response.id",
        "gen_ai.response.model",
        "llm.usage.total_tokens",
        "metadata.prompt_management_metadata",
        "gen_ai.usage.completion_tokens",
        "gen_ai.usage.prompt_tokens",
        "metadata.user_api_key_hash",
        "metadata.requester_ip_address",
        "metadata.user_api_key_team_alias",
        "metadata.requester_metadata",
        "metadata.user_api_key_team_id",
        "metadata.spend_logs_metadata",
        "metadata.usage_object",
        "metadata.user_api_key_alias",
        "metadata.user_api_key_user_id",
        "metadata.user_api_key_org_id",
        "metadata.user_api_key_end_user_id",
        "metadata.user_api_key_user_email",
        "metadata.applied_guardrails",
        "metadata.mcp_tool_call_metadata",
        "metadata.vector_store_request_metadata",
        "metadata.requester_custom_headers",
    ]

    _all_attributes = set(
        [
            name.value if isinstance(name, SpanAttributes) else name
            for name in span.attributes.keys()
        ]
    )
    print("all_attributes", _all_attributes)

    for attr in _all_attributes:
        print(f"attr: {attr}, type: {type(attr)}")

    assert _all_attributes == set(expected_attributes)

    pass