Spaces:
Configuration error
Configuration error
File size: 9,878 Bytes
447ebeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
# What is this?
## Unit tests for Azure AI integration
import asyncio
import os
import sys
import traceback
from dotenv import load_dotenv
import litellm.types
import litellm.types.utils
from litellm.llms.anthropic.chat import ModelResponseIterator
import httpx
import json
from litellm.llms.custom_httpx.http_handler import HTTPHandler
# from base_rerank_unit_tests import BaseLLMRerankTest
load_dotenv()
import io
import os
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
from typing import Optional
from unittest.mock import MagicMock, patch
import pytest
import litellm
from litellm import completion
@pytest.mark.parametrize(
"model_group_header, expected_model",
[
("offer-cohere-embed-multili-paygo", "Cohere-embed-v3-multilingual"),
("offer-cohere-embed-english-paygo", "Cohere-embed-v3-english"),
],
)
def test_map_azure_model_group(model_group_header, expected_model):
from litellm.llms.azure_ai.embed.cohere_transformation import AzureAICohereConfig
config = AzureAICohereConfig()
assert config._map_azure_model_group(model_group_header) == expected_model
@pytest.mark.asyncio
async def test_azure_ai_with_image_url():
"""
Important test:
Test that Azure AI studio can handle image_url passed when content is a list containing both text and image_url
"""
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
litellm.set_verbose = True
client = AsyncHTTPHandler()
with patch.object(client, "post") as mock_client:
try:
await litellm.acompletion(
model="azure_ai/Phi-3-5-vision-instruct-dcvov",
api_base="https://Phi-3-5-vision-instruct-dcvov.eastus2.models.ai.azure.com",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "What is in this image?",
},
{
"type": "image_url",
"image_url": {
"url": "https://litellm-listing.s3.amazonaws.com/litellm_logo.png"
},
},
],
},
],
api_key="fake-api-key",
client=client,
)
except Exception as e:
traceback.print_exc()
print(f"Error: {e}")
# Verify the request was made
mock_client.assert_called_once()
print(f"mock_client.call_args.kwargs: {mock_client.call_args.kwargs}")
# Check the request body
request_body = json.loads(mock_client.call_args.kwargs["data"])
assert request_body["model"] == "Phi-3-5-vision-instruct-dcvov"
assert request_body["messages"] == [
{
"role": "user",
"content": [
{"type": "text", "text": "What is in this image?"},
{
"type": "image_url",
"image_url": {
"url": "https://litellm-listing.s3.amazonaws.com/litellm_logo.png"
},
},
],
}
]
@pytest.mark.parametrize(
"api_base, expected_url",
[
(
"https://litellm8397336933.services.ai.azure.com/models/chat/completions?api-version=2024-05-01-preview",
"https://litellm8397336933.services.ai.azure.com/models/chat/completions?api-version=2024-05-01-preview",
),
(
"https://litellm8397336933.services.ai.azure.com/models/chat/completions",
"https://litellm8397336933.services.ai.azure.com/models/chat/completions",
),
(
"https://litellm8397336933.services.ai.azure.com/models",
"https://litellm8397336933.services.ai.azure.com/models/chat/completions",
),
(
"https://litellm8397336933.services.ai.azure.com",
"https://litellm8397336933.services.ai.azure.com/models/chat/completions",
),
],
)
def test_azure_ai_services_handler(api_base, expected_url):
from litellm.llms.custom_httpx.http_handler import HTTPHandler
litellm.set_verbose = True
client = HTTPHandler()
with patch.object(client, "post") as mock_client:
try:
response = litellm.completion(
model="azure_ai/Meta-Llama-3.1-70B-Instruct",
messages=[{"role": "user", "content": "Hello, how are you?"}],
api_key="my-fake-api-key",
api_base=api_base,
client=client,
)
print(response)
except Exception as e:
print(f"Error: {e}")
mock_client.assert_called_once()
assert mock_client.call_args.kwargs["headers"]["api-key"] == "my-fake-api-key"
assert mock_client.call_args.kwargs["url"] == expected_url
def test_azure_ai_services_with_api_version():
from litellm.llms.custom_httpx.http_handler import HTTPHandler, AsyncHTTPHandler
client = HTTPHandler()
with patch.object(client, "post") as mock_client:
try:
response = litellm.completion(
model="azure_ai/Meta-Llama-3.1-70B-Instruct",
messages=[{"role": "user", "content": "Hello, how are you?"}],
api_key="my-fake-api-key",
api_version="2024-05-01-preview",
api_base="https://litellm8397336933.services.ai.azure.com/models",
client=client,
)
except Exception as e:
print(f"Error: {e}")
mock_client.assert_called_once()
assert mock_client.call_args.kwargs["headers"]["api-key"] == "my-fake-api-key"
assert (
mock_client.call_args.kwargs["url"]
== "https://litellm8397336933.services.ai.azure.com/models/chat/completions?api-version=2024-05-01-preview"
)
@pytest.mark.skip(reason="Skipping due to cohere ssl issues")
def test_completion_azure_ai_command_r():
try:
import os
litellm.set_verbose = True
os.environ["AZURE_AI_API_BASE"] = os.getenv("AZURE_COHERE_API_BASE", "")
os.environ["AZURE_AI_API_KEY"] = os.getenv("AZURE_COHERE_API_KEY", "")
response = completion(
model="azure_ai/command-r-plus",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What is the meaning of life?"}
],
}
],
) # type: ignore
assert "azure_ai" in response.model
except litellm.Timeout as e:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_azure_deepseek_reasoning_content():
import json
client = HTTPHandler()
with patch.object(client, "post") as mock_post:
mock_response = MagicMock()
mock_response.text = json.dumps(
{
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": "<think>I am thinking here</think>\n\nThe sky is a canvas of blue",
"role": "assistant",
},
}
],
}
)
mock_response.status_code = 200
# Add required response attributes
mock_response.headers = {"Content-Type": "application/json"}
mock_response.json = lambda: json.loads(mock_response.text)
mock_post.return_value = mock_response
response = litellm.completion(
model="azure_ai/deepseek-r1",
messages=[{"role": "user", "content": "Hello, world!"}],
api_base="https://litellm8397336933.services.ai.azure.com/models/chat/completions",
api_key="my-fake-api-key",
client=client,
)
print(response)
assert response.choices[0].message.reasoning_content == "I am thinking here"
assert response.choices[0].message.content == "\n\nThe sky is a canvas of blue"
# skipping due to cohere rbac issues
# class TestAzureAIRerank(BaseLLMRerankTest):
# def get_custom_llm_provider(self) -> litellm.LlmProviders:
# return litellm.LlmProviders.AZURE_AI
# def get_base_rerank_call_args(self) -> dict:
# return {
# "model": "azure_ai/cohere-rerank-v3-english",
# "api_base": os.getenv("AZURE_AI_COHERE_API_BASE"),
# "api_key": os.getenv("AZURE_AI_COHERE_API_KEY"),
# }
@pytest.mark.asyncio
async def test_azure_ai_request_format():
"""
Test that Azure AI requests are formatted correctly with the proper endpoint and parameters
for both synchronous and asynchronous calls
"""
from openai import AsyncAzureOpenAI, AzureOpenAI
litellm._turn_on_debug()
# Set up the test parameters
api_key = os.getenv("AZURE_API_KEY")
api_base = f"{os.getenv('AZURE_API_BASE')}/openai/deployments/gpt-4o-new-test/chat/completions?api-version=2024-08-01-preview"
model = "azure_ai/gpt-4o"
messages = [
{"role": "user", "content": "hi"},
{"role": "assistant", "content": "Hello! How can I assist you today?"},
{"role": "user", "content": "hi"},
]
await litellm.acompletion(
custom_llm_provider="azure_ai",
api_key=api_key,
api_base=api_base,
model=model,
messages=messages,
)
|