File size: 13,136 Bytes
447ebeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import copy
import os
from datetime import datetime
from typing import Dict, List, Literal, Optional, Tuple, Union

import litellm
from litellm._logging import verbose_proxy_logger
from litellm.exceptions import GuardrailRaisedException
from litellm.integrations.custom_guardrail import CustomGuardrail
from litellm.llms.custom_httpx.http_handler import (
    get_async_httpx_client,
    httpxSpecialProvider,
)
from litellm.proxy._types import UserAPIKeyAuth
from litellm.secret_managers.main import get_secret_str
from litellm.types.guardrails import GuardrailEventHooks
from litellm.types.llms.openai import AllMessageValues
from litellm.types.proxy.guardrails.guardrail_hooks.lakera_ai_v2 import (
    LakeraAIRequest,
    LakeraAIResponse,
)


class LakeraAIGuardrail(CustomGuardrail):
    def __init__(
        self,
        api_key: Optional[str] = None,
        api_base: Optional[str] = None,
        project_id: Optional[str] = None,
        payload: Optional[bool] = True,
        breakdown: Optional[bool] = True,
        metadata: Optional[Dict] = None,
        dev_info: Optional[bool] = True,
        **kwargs,
    ):
        """
        Initialize the LakeraAIGuardrail class.

        This calls: https://api.lakera.ai/v2/guard

        Args:
            api_key: Optional[str] = None,
            api_base: Optional[str] = None,
            project_id: Optional[str] = None,
            payload: Optional[bool] = True,
            breakdown: Optional[bool] = True,
            metadata: Optional[Dict] = None,
            dev_info: Optional[bool] = True,
        """
        self.async_handler = get_async_httpx_client(
            llm_provider=httpxSpecialProvider.GuardrailCallback
        )
        self.lakera_api_key = api_key or os.environ["LAKERA_API_KEY"]
        self.project_id = project_id
        self.api_base = (
            api_base or get_secret_str("LAKERA_API_BASE") or "https://api.lakera.ai"
        )
        self.payload: Optional[bool] = payload
        self.breakdown: Optional[bool] = breakdown
        self.metadata: Optional[Dict] = metadata
        self.dev_info: Optional[bool] = dev_info
        super().__init__(**kwargs)

    async def call_v2_guard(
        self,
        messages: List[AllMessageValues],
        request_data: Dict,
    ) -> Tuple[LakeraAIResponse, Dict]:
        """
        Call the Lakera AI v2 guard API.
        """
        status: Literal["success", "failure"] = "success"
        exception_str: str = ""
        start_time: datetime = datetime.now()
        lakera_response: Optional[LakeraAIResponse] = None
        request: Dict = {}
        masked_entity_count: Dict = {}
        try:
            request = dict(
                LakeraAIRequest(
                    messages=messages,
                    project_id=self.project_id,
                    payload=self.payload,
                    breakdown=self.breakdown,
                    metadata=self.metadata,
                    dev_info=self.dev_info,
                )
            )
            verbose_proxy_logger.debug("Lakera AI v2 guard request: %s", request)
            response = await self.async_handler.post(
                url=f"{self.api_base}/v2/guard",
                headers={"Authorization": f"Bearer {self.lakera_api_key}"},
                json=request,
            )
            verbose_proxy_logger.debug(
                "Lakera AI v2 guard response: %s", response.json()
            )
            lakera_response = LakeraAIResponse(**response.json())
            return lakera_response, masked_entity_count
        except Exception as e:
            status = "failure"
            exception_str = str(e)
            raise e
        finally:
            ####################################################
            # Create Guardrail Trace for logging on Langfuse, Datadog, etc.
            ####################################################
            guardrail_json_response: Union[Exception, str, dict, List[dict]] = {}
            if status == "success":
                copy_lakera_response_dict = (
                    dict(copy.deepcopy(lakera_response)) if lakera_response else {}
                )
                # payload contains PII, we don't want to log it
                copy_lakera_response_dict.pop("payload")
                guardrail_json_response = copy_lakera_response_dict
            else:
                guardrail_json_response = exception_str
            self.add_standard_logging_guardrail_information_to_request_data(
                guardrail_json_response=guardrail_json_response,
                guardrail_status=status,
                request_data=request_data,
                start_time=start_time.timestamp(),
                end_time=datetime.now().timestamp(),
                duration=(datetime.now() - start_time).total_seconds(),
                masked_entity_count=masked_entity_count,
            )

    def _mask_pii_in_messages(
        self,
        messages: List[AllMessageValues],
        lakera_response: Optional[LakeraAIResponse],
        masked_entity_count: Dict,
    ) -> List[AllMessageValues]:
        """
        Return a copy of messages with any detected PII replaced by
        “[MASKED <TYPE>]” tokens.
        """
        payload = lakera_response.get("payload") if lakera_response else None
        if not payload:
            return messages

        # For each message, find its detections on the fly
        for idx, msg in enumerate(messages):
            content = msg.get("content", "")
            if not content:
                continue

            # For v1, we only support masking content strings
            if not isinstance(content, str):
                continue

            # Filter only detections for this message
            detected_modifications = [d for d in payload if d.get("message_id") == idx]
            if not detected_modifications:
                continue

            for modification in detected_modifications:
                start, end = modification.get("start", 0), modification.get("end", 0)

                # Extract the type (e.g. 'credit_card' → 'CREDIT_CARD')
                detector_type = modification.get("detector_type", "")
                if not detector_type:
                    continue

                typ = detector_type.split("/")[-1].upper() or "PII"
                mask = f"[MASKED {typ}]"
                if start is not None and end is not None:
                    content = self.mask_content_in_string(
                        content_string=content,
                        mask_string=mask,
                        start_index=start,
                        end_index=end,
                    )
                    masked_entity_count[typ] = masked_entity_count.get(typ, 0) + 1

            msg["content"] = content
        return messages

    async def async_pre_call_hook(
        self,
        user_api_key_dict: UserAPIKeyAuth,
        cache: litellm.DualCache,
        data: Dict,
        call_type: Literal[
            "completion",
            "text_completion",
            "embeddings",
            "image_generation",
            "moderation",
            "audio_transcription",
            "pass_through_endpoint",
            "rerank",
        ],
    ) -> Optional[Union[Exception, str, Dict]]:
        from litellm.proxy.common_utils.callback_utils import (
            add_guardrail_to_applied_guardrails_header,
        )

        verbose_proxy_logger.debug("Lakera AI: pre_call_hook")

        event_type: GuardrailEventHooks = GuardrailEventHooks.pre_call
        if self.should_run_guardrail(data=data, event_type=event_type) is not True:
            verbose_proxy_logger.debug(
                "Lakera AI: not running guardrail. Guardrail is disabled."
            )
            return data

        new_messages: Optional[List[AllMessageValues]] = data.get("messages")
        if new_messages is None:
            verbose_proxy_logger.warning(
                "Lakera AI: not running guardrail. No messages in data"
            )
            return data

        #########################################################
        ########## 1. Make the Lakera AI v2 guard API request ##########
        #########################################################
        lakera_guardrail_response, masked_entity_count = await self.call_v2_guard(
            messages=new_messages,
            request_data=data,
        )

        #########################################################
        ########## 2. Handle flagged content ##########
        #########################################################
        if lakera_guardrail_response.get("flagged") is True:
            # If only PII violations exist, mask the PII
            if self._is_only_pii_violation(lakera_guardrail_response):
                data["messages"] = self._mask_pii_in_messages(
                    messages=new_messages,
                    lakera_response=lakera_guardrail_response,
                    masked_entity_count=masked_entity_count,
                )
                verbose_proxy_logger.info(
                    "Lakera AI: Masked PII in messages instead of blocking request"
                )
            else:
                # If there are other violations or not set to mask PII, raise exception
                raise GuardrailRaisedException(
                    guardrail_name=self.guardrail_name,
                    message="Lakera AI flagged this request. Please review the request and try again.",
                )

        #########################################################
        ########## 3. Add the guardrail to the applied guardrails header ##########
        #########################################################
        add_guardrail_to_applied_guardrails_header(
            request_data=data, guardrail_name=self.guardrail_name
        )

        return data

    async def async_moderation_hook(
        self,
        data: dict,
        user_api_key_dict: UserAPIKeyAuth,
        call_type: Literal[
            "completion",
            "embeddings",
            "image_generation",
            "moderation",
            "audio_transcription",
            "responses",
        ],
    ):
        from litellm.proxy.common_utils.callback_utils import (
            add_guardrail_to_applied_guardrails_header,
        )

        event_type: GuardrailEventHooks = GuardrailEventHooks.during_call
        if self.should_run_guardrail(data=data, event_type=event_type) is not True:
            return

        new_messages: Optional[List[AllMessageValues]] = data.get("messages")
        if new_messages is None:
            verbose_proxy_logger.warning(
                "Lakera AI: not running guardrail. No messages in data"
            )
            return

        #########################################################
        ########## 1. Make the Lakera AI v2 guard API request ##########
        #########################################################
        lakera_guardrail_response, masked_entity_count = await self.call_v2_guard(
            messages=new_messages,
            request_data=data,
        )

        #########################################################
        ########## 2. Handle flagged content ##########
        #########################################################
        if lakera_guardrail_response.get("flagged") is True:
            # If only PII violations exist, mask the PII
            if self._is_only_pii_violation(lakera_guardrail_response):
                data["messages"] = self._mask_pii_in_messages(
                    messages=new_messages,
                    lakera_response=lakera_guardrail_response,
                    masked_entity_count=masked_entity_count,
                )
                verbose_proxy_logger.info(
                    "Lakera AI: Masked PII in messages instead of blocking request"
                )
            else:
                # If there are other violations or not set to mask PII, raise exception
                raise GuardrailRaisedException(
                    guardrail_name=self.guardrail_name,
                    message="Lakera AI flagged this request. Please review the request and try again.",
                )

        #########################################################
        ########## 3. Add the guardrail to the applied guardrails header ##########
        #########################################################
        add_guardrail_to_applied_guardrails_header(
            request_data=data, guardrail_name=self.guardrail_name
        )

        return data

    def _is_only_pii_violation(
        self, lakera_response: Optional[LakeraAIResponse]
    ) -> bool:
        """
        Returns True if there are only PII violations in the response.
        """
        if not lakera_response:
            return False

        for item in lakera_response.get("payload", []) or []:
            detector_type = item.get("detector_type", "") or ""
            if not detector_type.startswith("pii/"):
                return False
        return True