File size: 1,916 Bytes
447ebeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
"""
Translate from OpenAI's `/v1/chat/completions` to Perplexity's `/v1/chat/completions`
"""

from typing import Optional, Tuple

import litellm
from litellm._logging import verbose_logger
from litellm.secret_managers.main import get_secret_str

from ...openai.chat.gpt_transformation import OpenAIGPTConfig


class PerplexityChatConfig(OpenAIGPTConfig):
    @property
    def custom_llm_provider(self) -> Optional[str]:
        return "perplexity"

    def _get_openai_compatible_provider_info(
        self, api_base: Optional[str], api_key: Optional[str]
    ) -> Tuple[Optional[str], Optional[str]]:
        api_base = api_base or get_secret_str("PERPLEXITY_API_BASE") or "https://api.perplexity.ai"  # type: ignore
        dynamic_api_key = (
            api_key
            or get_secret_str("PERPLEXITYAI_API_KEY")
            or get_secret_str("PERPLEXITY_API_KEY")
        )
        return api_base, dynamic_api_key

    def get_supported_openai_params(self, model: str) -> list:
        """
        Perplexity supports a subset of OpenAI params

        Ref: https://docs.perplexity.ai/api-reference/chat-completions

        Eg. Perplexity does not support tools, tool_choice, function_call, functions, etc.
        """
        base_openai_params = [
            "frequency_penalty",
            "max_tokens",
            "max_completion_tokens",
            "presence_penalty",
            "response_format",
            "stream",
            "temperature",
            "top_p",
            "max_retries",
            "extra_headers",
        ]

        try:
            if litellm.supports_reasoning(
                model=model, custom_llm_provider=self.custom_llm_provider
            ):
                base_openai_params.append("reasoning_effort")
        except Exception as e:
            verbose_logger.debug(f"Error checking if model supports reasoning: {e}")
        return base_openai_params