Spaces:
Running
Running
File size: 45,200 Bytes
91eaff6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 |
# Reference: `textgraphs` package
<img src='../assets/nouns/api.png' alt='API by Adnen Kadri from the Noun Project' />
Package definitions for the `TextGraphs` library.
see copyright/license https://huggingface.co/spaces/DerwenAI/textgraphs/blob/main/README.md
## [`TextGraphs` class](#TextGraphs)
Construct a _lemma graph_ from the unstructured text source,
then extract ranked phrases using a `textgraph` algorithm.
---
#### [`infer_relations_async` method](#textgraphs.TextGraphs.infer_relations_async)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/doc.py#L641)
```python
infer_relations_async(pipe, debug=False)
```
Gather triples representing inferred relations and build edges,
concurrently by running an async queue.
<https://stackoverflow.com/questions/52582685/using-asyncio-queue-for-producer-consumer-flow>
Make sure to call beforehand: `TextGraphs.collect_graph_elements()`
* `pipe` : `textgraphs.pipe.Pipeline`
configured pipeline for this document
* `debug` : `bool`
debugging flag
* *returns* : `typing.List[textgraphs.elem.Edge]`
a list of the inferred `Edge` objects
---
#### [`__init__` method](#textgraphs.TextGraphs.__init__)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/doc.py#L80)
```python
__init__(factory=None, iri_base="https://github.com/DerwenAI/textgraphs/ns/")
```
Constructor.
* `factory` : `typing.Optional[textgraphs.pipe.PipelineFactory]`
optional `PipelineFactory` used to configure components
---
#### [`create_pipeline` method](#textgraphs.TextGraphs.create_pipeline)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/doc.py#L103)
```python
create_pipeline(text_input)
```
Use the pipeline factory to create a pipeline (e.g., `spaCy.Document`)
for each text input, which are typically paragraph-length.
* `text_input` : `str`
raw text to be parsed by this pipeline
* *returns* : `textgraphs.pipe.Pipeline`
a configured pipeline
---
#### [`create_render` method](#textgraphs.TextGraphs.create_render)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/doc.py#L122)
```python
create_render()
```
Create an object for rendering the graph in `PyVis` HTML+JavaScript.
* *returns* : `textgraphs.vis.RenderPyVis`
a configured `RenderPyVis` object for generating graph visualizations
---
#### [`collect_graph_elements` method](#textgraphs.TextGraphs.collect_graph_elements)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/doc.py#L381)
```python
collect_graph_elements(pipe, text_id=0, para_id=0, debug=False)
```
Collect the elements of a _lemma graph_ from the results of running
the `textgraph` algorithm. These elements include: parse dependencies,
lemmas, entities, and noun chunks.
Make sure to call beforehand: `TextGraphs.create_pipeline()`
* `pipe` : `textgraphs.pipe.Pipeline`
configured pipeline for this document
* `text_id` : `int`
text (top-level document) identifier
* `para_id` : `int`
paragraph identitifer
* `debug` : `bool`
debugging flag
---
#### [`construct_lemma_graph` method](#textgraphs.TextGraphs.construct_lemma_graph)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/doc.py#L474)
```python
construct_lemma_graph(debug=False)
```
Construct the base level of the _lemma graph_ from the collected
elements. This gets represented in `NetworkX` as a directed graph
with parallel edges.
Make sure to call beforehand: `TextGraphs.collect_graph_elements()`
* `debug` : `bool`
debugging flag
---
#### [`perform_entity_linking` method](#textgraphs.TextGraphs.perform_entity_linking)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/doc.py#L534)
```python
perform_entity_linking(pipe, debug=False)
```
Perform _entity linking_ based on the `KnowledgeGraph` object.
Make sure to call beforehand: `TextGraphs.collect_graph_elements()`
* `pipe` : `textgraphs.pipe.Pipeline`
configured pipeline for this document
* `debug` : `bool`
debugging flag
---
#### [`infer_relations` method](#textgraphs.TextGraphs.infer_relations)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/doc.py#L705)
```python
infer_relations(pipe, debug=False)
```
Gather triples representing inferred relations and build edges.
Make sure to call beforehand: `TextGraphs.collect_graph_elements()`
* `pipe` : `textgraphs.pipe.Pipeline`
configured pipeline for this document
* `debug` : `bool`
debugging flag
* *returns* : `typing.List[textgraphs.elem.Edge]`
a list of the inferred `Edge` objects
---
#### [`calc_phrase_ranks` method](#textgraphs.TextGraphs.calc_phrase_ranks)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/doc.py#L893)
```python
calc_phrase_ranks(pr_alpha=0.85, debug=False)
```
Calculate the weights for each node in the _lemma graph_, then
stack-rank the nodes so that entities have priority over lemmas.
Phrase ranks are normalized to sum to 1.0 and these now represent
the ranked entities extracted from the document.
Make sure to call beforehand: `TextGraphs.construct_lemma_graph()`
* `pr_alpha` : `float`
optional `alpha` parameter for the PageRank algorithm
* `debug` : `bool`
debugging flag
---
#### [`get_phrases` method](#textgraphs.TextGraphs.get_phrases)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/doc.py#L940)
```python
get_phrases()
```
Return the entities extracted from the document.
Make sure to call beforehand: `TextGraphs.calc_phrase_ranks()`
* *yields* :
extracted entities
---
#### [`get_phrases_as_df` method](#textgraphs.TextGraphs.get_phrases_as_df)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/doc.py#L973)
```python
get_phrases_as_df()
```
Return the ranked extracted entities as a dataframe.
Make sure to call beforehand: `TextGraphs.calc_phrase_ranks()`
* *returns* : `pandas.core.frame.DataFrame`
a `pandas.DataFrame` of the extracted entities
---
#### [`export_rdf` method](#textgraphs.TextGraphs.export_rdf)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/doc.py#L990)
```python
export_rdf(lang="en")
```
Extract the entities and relations which have IRIs as RDF triples.
* `lang` : `str`
language identifier
* *returns* : `str`
RDF triples N3 (Turtle) format as a string
---
#### [`denormalize_iri` method](#textgraphs.TextGraphs.denormalize_iri)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/doc.py#L1085)
```python
denormalize_iri(uri_ref)
```
Discern between a parsed entity and a linked entity.
* *returns* : `str`
_lemma_key_ for a parsed entity, the full IRI for a linked entity
---
#### [`load_bootstrap_ttl` method](#textgraphs.TextGraphs.load_bootstrap_ttl)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/doc.py#L1103)
```python
load_bootstrap_ttl(ttl_str, debug=False)
```
Parse a TTL string with an RDF semantic graph representation to load
bootstrap definitions for the _lemma graph_ prior to parsing, e.g.,
for synonyms.
* `ttl_str` : `str`
RDF triples in TTL (Turtle/N3) format
* `debug` : `bool`
debugging flag
---
#### [`export_kuzu` method](#textgraphs.TextGraphs.export_kuzu)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/doc.py#L1215)
```python
export_kuzu(zip_name="lemma.zip", debug=False)
```
Export a labeled property graph for KùzuDB (openCypher).
* `debug` : `bool`
debugging flag
* *returns* : `str`
name of the generated ZIP file
## [`SimpleGraph` class](#SimpleGraph)
An in-memory graph used to build a `MultiDiGraph` in NetworkX.
---
#### [`__init__` method](#textgraphs.SimpleGraph.__init__)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/graph.py#L31)
```python
__init__()
```
Constructor.
---
#### [`reset` method](#textgraphs.SimpleGraph.reset)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/graph.py#L42)
```python
reset()
```
Re-initialize the data structures, resetting all but the configuration.
---
#### [`make_node` method](#textgraphs.SimpleGraph.make_node)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/graph.py#L53)
```python
make_node(tokens, key, span, kind, text_id, para_id, sent_id, label=None, length=1, linked=True)
```
Lookup and return a `Node` object.
By default, link matching keys into the same node.
Otherwise instantiate a new node if it does not exist already.
* `tokens` : `typing.List[textgraphs.elem.Node]`
list of parsed tokens
* `key` : `str`
lemma key (invariant)
* `span` : `spacy.tokens.token.Token`
token span for the parsed entity
* `kind` : `<enum 'NodeEnum'>`
the kind of this `Node` object
* `text_id` : `int`
text (top-level document) identifier
* `para_id` : `int`
paragraph identitifer
* `sent_id` : `int`
sentence identifier
* `label` : `typing.Optional[str]`
node label (for a new object)
* `length` : `int`
length of token span
* `linked` : `bool`
flag for whether this links to an entity
* *returns* : `textgraphs.elem.Node`
the constructed `Node` object
---
#### [`make_edge` method](#textgraphs.SimpleGraph.make_edge)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/graph.py#L167)
```python
make_edge(src_node, dst_node, kind, rel, prob, key=None, debug=False)
```
Lookup an edge, creating a new one if it does not exist already,
and increment the count if it does.
* `src_node` : `textgraphs.elem.Node`
source node in the triple
* `dst_node` : `textgraphs.elem.Node`
destination node in the triple
* `kind` : `<enum 'RelEnum'>`
the kind of this `Edge` object
* `rel` : `str`
relation label
* `prob` : `float`
probability of this `Edge` within the graph
* `key` : `typing.Optional[str]`
lemma key (invariant); generate a key if this is not provided
* `debug` : `bool`
debugging flag
* *returns* : `typing.Optional[textgraphs.elem.Edge]`
the constructed `Edge` object; this may be `None` if the input parameters indicate skipping the edge
---
#### [`dump_lemma_graph` method](#textgraphs.SimpleGraph.dump_lemma_graph)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/graph.py#L236)
```python
dump_lemma_graph()
```
Dump the _lemma graph_ as a JSON string in _node-link_ format,
suitable for serialization and subsequent use in JavaScript,
Neo4j, Graphistry, etc.
Make sure to call beforehand: `TextGraphs.calc_phrase_ranks()`
* *returns* : `str`
a JSON representation of the exported _lemma graph_ in
---
#### [`load_lemma_graph` method](#textgraphs.SimpleGraph.load_lemma_graph)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/graph.py#L299)
```python
load_lemma_graph(json_str, debug=False)
```
Load from a JSON string in
a JSON representation of the exported _lemma graph_ in
[_node-link_](https://networkx.org/documentation/stable/reference/readwrite/json_graph.html)
format
* `debug` : `bool`
debugging flag
## [`Node` class](#Node)
A data class representing one node, i.e., an extracted phrase.
---
#### [`__repr__` method](#textgraphs.Node.__repr__)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/dataclasses.py#L232)
```python
__repr__()
```
---
#### [`get_linked_label` method](#textgraphs.Node.get_linked_label)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/elem.py#L119)
```python
get_linked_label()
```
When this node has a linked entity, return that IRI.
Otherwise return its `label` value.
* *returns* : `typing.Optional[str]`
a label for the linked entity
---
#### [`get_name` method](#textgraphs.Node.get_name)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/elem.py#L135)
```python
get_name()
```
Return a brief name for the graphical depiction of this Node.
* *returns* : `str`
brief label to be used in a graph
---
#### [`get_stacked_count` method](#textgraphs.Node.get_stacked_count)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/elem.py#L152)
```python
get_stacked_count()
```
Return a modified count, to redact verbs and linked entities from
the stack-rank partitions.
* *returns* : `int`
count, used for re-ranking extracted entities
---
#### [`get_pos` method](#textgraphs.Node.get_pos)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/elem.py#L168)
```python
get_pos()
```
Generate a position span for `OpenNRE`.
* *returns* : `typing.Tuple[int, int]`
a position span needed for `OpenNRE` relation extraction
## [`Edge` class](#Edge)
A data class representing an edge between two nodes.
---
#### [`__repr__` method](#textgraphs.Edge.__repr__)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/dataclasses.py#L232)
```python
__repr__()
```
## [`EnumBase` class](#EnumBase)
A mixin for Enum codecs.
## [`NodeEnum` class](#NodeEnum)
Enumeration for the kinds of node categories
## [`RelEnum` class](#RelEnum)
Enumeration for the kinds of edge relations
## [`PipelineFactory` class](#PipelineFactory)
Factory pattern for building a pipeline, which is one of the more
expensive operations with `spaCy`
---
#### [`__init__` method](#textgraphs.PipelineFactory.__init__)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/pipe.py#L434)
```python
__init__(spacy_model="en_core_web_sm", ner=None, kg=<textgraphs.pipe.KnowledgeGraph object at 0x130529960>, infer_rels=[])
```
Constructor which instantiates the `spaCy` pipelines:
* `tok_pipe` -- regular generator for parsed tokens
* `ner_pipe` -- with entities merged
* `aux_pipe` -- spotlight entity linking
which will be needed for parsing and entity linking.
* `spacy_model` : `str`
the specific model to use in `spaCy` pipelines
* `ner` : `typing.Optional[textgraphs.pipe.Component]`
optional custom NER component
* `kg` : `textgraphs.pipe.KnowledgeGraph`
knowledge graph used for entity linking
* `infer_rels` : `typing.List[textgraphs.pipe.InferRel]`
a list of components for inferring relations
---
#### [`create_pipeline` method](#textgraphs.PipelineFactory.create_pipeline)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/pipe.py#L508)
```python
create_pipeline(text_input)
```
Instantiate the document pipelines needed to parse the input text.
* `text_input` : `str`
raw text to be parsed
* *returns* : `textgraphs.pipe.Pipeline`
a configured `Pipeline` object
## [`Pipeline` class](#Pipeline)
Manage parsing of a document, which is assumed to be paragraph-sized.
---
#### [`__init__` method](#textgraphs.Pipeline.__init__)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/pipe.py#L216)
```python
__init__(text_input, tok_pipe, ner_pipe, aux_pipe, kg, infer_rels)
```
Constructor.
* `text_input` : `str`
raw text to be parsed
* `tok_pipe` : `spacy.language.Language`
the `spaCy.Language` pipeline used for tallying individual tokens
* `ner_pipe` : `spacy.language.Language`
the `spaCy.Language` pipeline used for tallying named entities
* `aux_pipe` : `spacy.language.Language`
the `spaCy.Language` pipeline used for auxiliary components (e.g., `DBPedia Spotlight`)
* `kg` : `textgraphs.pipe.KnowledgeGraph`
knowledge graph used for entity linking
* `infer_rels` : `typing.List[textgraphs.pipe.InferRel]`
a list of components for inferring relations
---
#### [`get_lemma_key` classmethod](#textgraphs.Pipeline.get_lemma_key)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/pipe.py#L267)
```python
get_lemma_key(span, placeholder=False)
```
Compose a unique, invariant lemma key for the given span.
* `span` : `typing.Union[spacy.tokens.span.Span, spacy.tokens.token.Token]`
span of tokens within the lemma
* `placeholder` : `bool`
flag for whether to create a placeholder
* *returns* : `str`
a composed lemma key
---
#### [`get_ent_lemma_keys` method](#textgraphs.Pipeline.get_ent_lemma_keys)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/pipe.py#L308)
```python
get_ent_lemma_keys()
```
Iterate through the fully qualified lemma keys for an extracted entity.
* *yields* :
the lemma keys within an extracted entity
---
#### [`link_noun_chunks` method](#textgraphs.Pipeline.link_noun_chunks)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/pipe.py#L321)
```python
link_noun_chunks(nodes, debug=False)
```
Link any noun chunks which are not already subsumed by named entities.
* `nodes` : `dict`
dictionary of `Node` objects in the graph
* `debug` : `bool`
debugging flag
* *returns* : `typing.List[textgraphs.elem.NounChunk]`
a list of identified noun chunks which are novel
---
#### [`iter_entity_pairs` method](#textgraphs.Pipeline.iter_entity_pairs)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/pipe.py#L373)
```python
iter_entity_pairs(pipe_graph, max_skip, debug=True)
```
Iterator for entity pairs for which the algorithm infers relations.
* `pipe_graph` : `networkx.classes.multigraph.MultiGraph`
a `networkx.MultiGraph` representation of the graph, reused for graph algorithms
* `max_skip` : `int`
maximum distance between entities for inferred relations
* `debug` : `bool`
debugging flag
* *yields* :
pairs of entities within a range, e.g., to use for relation extraction
## [`Component` class](#Component)
Abstract base class for a `spaCy` pipeline component.
---
#### [`augment_pipe` method](#textgraphs.Component.augment_pipe)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/pipe.py#L41)
```python
augment_pipe(factory)
```
Encapsulate a `spaCy` call to `add_pipe()` configuration.
* `factory` : `PipelineFactory`
a `PipelineFactory` used to configure components
## [`NERSpanMarker` class](#NERSpanMarker)
Configures a `spaCy` pipeline component for `SpanMarkerNER`
---
#### [`__init__` method](#textgraphs.NERSpanMarker.__init__)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/ner.py#L22)
```python
__init__(ner_model="tomaarsen/span-marker-roberta-large-ontonotes5")
```
Constructor.
* `ner_model` : `str`
model to be used in `SpanMarker`
---
#### [`augment_pipe` method](#textgraphs.NERSpanMarker.augment_pipe)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/ner.py#L36)
```python
augment_pipe(factory)
```
Encapsulate a `spaCy` call to `add_pipe()` configuration.
* `factory` : `textgraphs.pipe.PipelineFactory`
the `PipelineFactory` used to configure this pipeline component
## [`NounChunk` class](#NounChunk)
A data class representing one noun chunk, i.e., a candidate as an extracted phrase.
---
#### [`__repr__` method](#textgraphs.NounChunk.__repr__)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/dataclasses.py#L232)
```python
__repr__()
```
## [`KnowledgeGraph` class](#KnowledgeGraph)
Base class for a _knowledge graph_ interface.
---
#### [`augment_pipe` method](#textgraphs.KnowledgeGraph.augment_pipe)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/pipe.py#L63)
```python
augment_pipe(factory)
```
Encapsulate a `spaCy` call to `add_pipe()` configuration.
* `factory` : `PipelineFactory`
a `PipelineFactory` used to configure components
---
#### [`remap_ner` method](#textgraphs.KnowledgeGraph.remap_ner)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/pipe.py#L76)
```python
remap_ner(label)
```
Remap the OntoTypes4 values from NER output to more general-purpose IRIs.
* `label` : `typing.Optional[str]`
input NER label, an `OntoTypes4` value
* *returns* : `typing.Optional[str]`
an IRI for the named entity
---
#### [`normalize_prefix` method](#textgraphs.KnowledgeGraph.normalize_prefix)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/pipe.py#L92)
```python
normalize_prefix(iri, debug=False)
```
Normalize the given IRI to use standard namespace prefixes.
* `iri` : `str`
input IRI, in fully-qualified domain representation
* `debug` : `bool`
debugging flag
* *returns* : `str`
the compact IRI representation, using an RDF namespace prefix
---
#### [`perform_entity_linking` method](#textgraphs.KnowledgeGraph.perform_entity_linking)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/pipe.py#L113)
```python
perform_entity_linking(graph, pipe, debug=False)
```
Perform _entity linking_ based on "spotlight" and other services.
* `graph` : `textgraphs.graph.SimpleGraph`
source graph
* `pipe` : `Pipeline`
configured pipeline for the current document
* `debug` : `bool`
debugging flag
---
#### [`resolve_rel_iri` method](#textgraphs.KnowledgeGraph.resolve_rel_iri)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/pipe.py#L135)
```python
resolve_rel_iri(rel, lang="en", debug=False)
```
Resolve a `rel` string from a _relation extraction_ model which has
been trained on this knowledge graph.
* `rel` : `str`
relation label, generation these source from Wikidata for many RE projects
* `lang` : `str`
language identifier
* `debug` : `bool`
debugging flag
* *returns* : `typing.Optional[str]`
a resolved IRI
## [`KGSearchHit` class](#KGSearchHit)
A data class representing a hit from a _knowledge graph_ search.
---
#### [`__repr__` method](#textgraphs.KGSearchHit.__repr__)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/dataclasses.py#L232)
```python
__repr__()
```
## [`KGWikiMedia` class](#KGWikiMedia)
Manage access to WikiMedia-related APIs.
---
#### [`__init__` method](#textgraphs.KGWikiMedia.__init__)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/kg.py#L165)
```python
__init__(spotlight_api="https://api.dbpedia-spotlight.org/en", dbpedia_search_api="https://lookup.dbpedia.org/api/search", dbpedia_sparql_api="https://dbpedia.org/sparql", wikidata_api="https://www.wikidata.org/w/api.php", ner_map=OrderedDict([('CARDINAL', {'iri': 'http://dbpedia.org/resource/Cardinal_number', 'definition': 'Numerals that do not fall under another type', 'label': 'cardinal number'}), ('DATE', {'iri': 'http://dbpedia.org/ontology/date', 'definition': 'Absolute or relative dates or periods', 'label': 'date'}), ('EVENT', {'iri': 'http://dbpedia.org/ontology/Event', 'definition': 'Named hurricanes, battles, wars, sports events, etc.', 'label': 'event'}), ('FAC', {'iri': 'http://dbpedia.org/ontology/Infrastructure', 'definition': 'Buildings, airports, highways, bridges, etc.', 'label': 'infrastructure'}), ('GPE', {'iri': 'http://dbpedia.org/ontology/Country', 'definition': 'Countries, cities, states', 'label': 'country'}), ('LANGUAGE', {'iri': 'http://dbpedia.org/ontology/Language', 'definition': 'Any named language', 'label': 'language'}), ('LAW', {'iri': 'http://dbpedia.org/ontology/Law', 'definition': 'Named documents made into laws', 'label': 'law'}), ('LOC', {'iri': 'http://dbpedia.org/ontology/Place', 'definition': 'Non-GPE locations, mountain ranges, bodies of water', 'label': 'place'}), ('MONEY', {'iri': 'http://dbpedia.org/resource/Money', 'definition': 'Monetary values, including unit', 'label': 'money'}), ('NORP', {'iri': 'http://dbpedia.org/ontology/nationality', 'definition': 'Nationalities or religious or political groups', 'label': 'nationality'}), ('ORDINAL', {'iri': 'http://dbpedia.org/resource/Ordinal_number', 'definition': 'Ordinal number, i.e., first, second, etc.', 'label': 'ordinal number'}), ('ORG', {'iri': 'http://dbpedia.org/ontology/Organisation', 'definition': 'Companies, agencies, institutions, etc.', 'label': 'organization'}), ('PERCENT', {'iri': 'http://dbpedia.org/resource/Percentage', 'definition': 'Percentage', 'label': 'percentage'}), ('PERSON', {'iri': 'http://dbpedia.org/ontology/Person', 'definition': 'People, including fictional', 'label': 'person'}), ('PRODUCT', {'iri': 'http://dbpedia.org/ontology/product', 'definition': 'Vehicles, weapons, foods, etc. (Not services)', 'label': 'product'}), ('QUANTITY', {'iri': 'http://dbpedia.org/resource/Quantity', 'definition': 'Measurements, as of weight or distance', 'label': 'quantity'}), ('TIME', {'iri': 'http://dbpedia.org/ontology/time', 'definition': 'Times smaller than a day', 'label': 'time'}), ('WORK OF ART', {'iri': 'http://dbpedia.org/resource/Work_of_art', 'definition': 'Titles of books, songs, etc.', 'label': 'work of art'})]), ns_prefix=OrderedDict([('dbc', 'http://dbpedia.org/resource/Category:'), ('dbt', 'http://dbpedia.org/resource/Template:'), ('dbr', 'http://dbpedia.org/resource/'), ('yago', 'http://dbpedia.org/class/yago/'), ('dbd', 'http://dbpedia.org/datatype/'), ('dbo', 'http://dbpedia.org/ontology/'), ('dbp', 'http://dbpedia.org/property/'), ('units', 'http://dbpedia.org/units/'), ('dbpedia-commons', 'http://commons.dbpedia.org/resource/'), ('dbpedia-wikicompany', 'http://dbpedia.openlinksw.com/wikicompany/'), ('dbpedia-wikidata', 'http://wikidata.dbpedia.org/resource/'), ('wd', 'http://www.wikidata.org/'), ('wd_ent', 'http://www.wikidata.org/entity/'), ('rdf', 'http://www.w3.org/1999/02/22-rdf-syntax-ns#'), ('schema', 'https://schema.org/'), ('owl', 'http://www.w3.org/2002/07/owl#')]), min_alias=0.8, min_similarity=0.9)
```
Constructor.
* `spotlight_api` : `str`
`DBPedia Spotlight` API or equivalent local service
* `dbpedia_search_api` : `str`
`DBPedia Search` API or equivalent local service
* `dbpedia_sparql_api` : `str`
`DBPedia SPARQL` API or equivalent local service
* `wikidata_api` : `str`
`Wikidata Search` API or equivalent local service
* `ner_map` : `dict`
named entity map for standardizing IRIs
* `ns_prefix` : `dict`
RDF namespace prefixes
* `min_alias` : `float`
minimum alias probability threshold for accepting linked entities
* `min_similarity` : `float`
minimum label similarity threshold for accepting linked entities
---
#### [`augment_pipe` method](#textgraphs.KGWikiMedia.augment_pipe)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/kg.py#L219)
```python
augment_pipe(factory)
```
Encapsulate a `spaCy` call to `add_pipe()` configuration.
* `factory` : `textgraphs.pipe.PipelineFactory`
a `PipelineFactory` used to configure components
---
#### [`remap_ner` method](#textgraphs.KGWikiMedia.remap_ner)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/kg.py#L237)
```python
remap_ner(label)
```
Remap the OntoTypes4 values from NER output to more general-purpose IRIs.
* `label` : `typing.Optional[str]`
input NER label, an `OntoTypes4` value
* *returns* : `typing.Optional[str]`
an IRI for the named entity
---
#### [`normalize_prefix` method](#textgraphs.KGWikiMedia.normalize_prefix)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/kg.py#L266)
```python
normalize_prefix(iri, debug=False)
```
Normalize the given IRI using the standard DBPedia namespace prefixes.
* `iri` : `str`
input IRI, in fully-qualified domain representation
* `debug` : `bool`
debugging flag
* *returns* : `str`
the compact IRI representation, using an RDF namespace prefix
---
#### [`perform_entity_linking` method](#textgraphs.KGWikiMedia.perform_entity_linking)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/kg.py#L306)
```python
perform_entity_linking(graph, pipe, debug=False)
```
Perform _entity linking_ based on `DBPedia Spotlight` and other services.
* `graph` : `textgraphs.graph.SimpleGraph`
source graph
* `pipe` : `textgraphs.pipe.Pipeline`
configured pipeline for the current document
* `debug` : `bool`
debugging flag
---
#### [`resolve_rel_iri` method](#textgraphs.KGWikiMedia.resolve_rel_iri)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/kg.py#L370)
```python
resolve_rel_iri(rel, lang="en", debug=False)
```
Resolve a `rel` string from a _relation extraction_ model which has
been trained on this _knowledge graph_, which defaults to using the
`WikiMedia` graphs.
* `rel` : `str`
relation label, generation these source from Wikidata for many RE projects
* `lang` : `str`
language identifier
* `debug` : `bool`
debugging flag
* *returns* : `typing.Optional[str]`
a resolved IRI
---
#### [`wikidata_search` method](#textgraphs.KGWikiMedia.wikidata_search)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/kg.py#L575)
```python
wikidata_search(query, lang="en", debug=False)
```
Query the Wikidata search API.
* `query` : `str`
query string
* `lang` : `str`
language identifier
* `debug` : `bool`
debugging flag
* *returns* : `typing.Optional[textgraphs.elem.KGSearchHit]`
search hit, if any
---
#### [`dbpedia_search_entity` method](#textgraphs.KGWikiMedia.dbpedia_search_entity)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/kg.py#L641)
```python
dbpedia_search_entity(query, lang="en", debug=False)
```
Perform a DBPedia API search.
* `query` : `str`
query string
* `lang` : `str`
language identifier
* `debug` : `bool`
debugging flag
* *returns* : `typing.Optional[textgraphs.elem.KGSearchHit]`
search hit, if any
---
#### [`dbpedia_sparql_query` method](#textgraphs.KGWikiMedia.dbpedia_sparql_query)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/kg.py#L738)
```python
dbpedia_sparql_query(sparql, debug=False)
```
Perform a SPARQL query on DBPedia.
* `sparql` : `str`
SPARQL query string
* `debug` : `bool`
debugging flag
* *returns* : `dict`
dictionary of query results
---
#### [`dbpedia_wikidata_equiv` method](#textgraphs.KGWikiMedia.dbpedia_wikidata_equiv)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/kg.py#L791)
```python
dbpedia_wikidata_equiv(dbpedia_iri, debug=False)
```
Perform a SPARQL query on DBPedia to find an equivalent Wikidata entity.
* `dbpedia_iri` : `str`
IRI in DBpedia
* `debug` : `bool`
debugging flag
* *returns* : `typing.Optional[str]`
equivalent IRI in Wikidata
## [`LinkedEntity` class](#LinkedEntity)
A data class representing one linked entity.
---
#### [`__repr__` method](#textgraphs.LinkedEntity.__repr__)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/dataclasses.py#L232)
```python
__repr__()
```
## [`InferRel` class](#InferRel)
Abstract base class for a _relation extraction_ model wrapper.
---
#### [`gen_triples_async` method](#textgraphs.InferRel.gen_triples_async)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/pipe.py#L188)
```python
gen_triples_async(pipe, queue, debug=False)
```
Infer relations as triples produced to a queue _concurrently_.
* `pipe` : `Pipeline`
configured pipeline for the current document
* `queue` : `asyncio.queues.Queue`
queue of inference tasks to be performed
* `debug` : `bool`
debugging flag
---
#### [`gen_triples` method](#textgraphs.InferRel.gen_triples)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/pipe.py#L166)
```python
gen_triples(pipe, debug=False)
```
Infer relations as triples through a generator _iteratively_.
* `pipe` : `Pipeline`
configured pipeline for the current document
* `debug` : `bool`
debugging flag
* *yields* :
generated triples
## [`InferRel_OpenNRE` class](#InferRel_OpenNRE)
Perform relation extraction based on the `OpenNRE` model.
<https://github.com/thunlp/OpenNRE>
---
#### [`__init__` method](#textgraphs.InferRel_OpenNRE.__init__)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/rel.py#L33)
```python
__init__(model="wiki80_cnn_softmax", max_skip=11, min_prob=0.9)
```
Constructor.
* `model` : `str`
the specific model to be used in `OpenNRE`
* `max_skip` : `int`
maximum distance between entities for inferred relations
* `min_prob` : `float`
minimum probability threshold for accepting an inferred relation
---
#### [`gen_triples` method](#textgraphs.InferRel_OpenNRE.gen_triples)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/rel.py#L58)
```python
gen_triples(pipe, debug=False)
```
Iterate on entity pairs to drive `OpenNRE`, inferring relations
represented as triples which get produced by a generator.
* `pipe` : `textgraphs.pipe.Pipeline`
configured pipeline for the current document
* `debug` : `bool`
debugging flag
* *yields* :
generated triples as candidates for inferred relations
## [`InferRel_Rebel` class](#InferRel_Rebel)
Perform relation extraction based on the `REBEL` model.
<https://github.com/Babelscape/rebel>
<https://huggingface.co/spaces/Babelscape/mrebel-demo>
---
#### [`__init__` method](#textgraphs.InferRel_Rebel.__init__)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/rel.py#L121)
```python
__init__(lang="en_XX", mrebel_model="Babelscape/mrebel-large")
```
Constructor.
* `lang` : `str`
language identifier
* `mrebel_model` : `str`
tokenizer model to be used
---
#### [`tokenize_sent` method](#textgraphs.InferRel_Rebel.tokenize_sent)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/rel.py#L145)
```python
tokenize_sent(text)
```
Apply the tokenizer manually, since we need to extract special tokens.
* `text` : `str`
input text for the sentence to be tokenized
* *returns* : `str`
extracted tokens
---
#### [`extract_triplets_typed` method](#textgraphs.InferRel_Rebel.extract_triplets_typed)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/rel.py#L174)
```python
extract_triplets_typed(text)
```
Parse the generated text and extract its triplets.
* `text` : `str`
input text for the sentence to use in inference
* *returns* : `list`
a list of extracted triples
---
#### [`gen_triples` method](#textgraphs.InferRel_Rebel.gen_triples)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/rel.py#L259)
```python
gen_triples(pipe, debug=False)
```
Drive `REBEL` to infer relations for each sentence, represented as
triples which get produced by a generator.
* `pipe` : `textgraphs.pipe.Pipeline`
configured pipeline for the current document
* `debug` : `bool`
debugging flag
* *yields* :
generated triples as candidates for inferred relations
## [`RenderPyVis` class](#RenderPyVis)
Render the _lemma graph_ as a `PyVis` network.
---
#### [`__init__` method](#textgraphs.RenderPyVis.__init__)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/vis.py#L76)
```python
__init__(graph, kg)
```
Constructor.
* `graph` : `textgraphs.graph.SimpleGraph`
source graph to be visualized
* `kg` : `textgraphs.pipe.KnowledgeGraph`
knowledge graph used for entity linking
---
#### [`render_lemma_graph` method](#textgraphs.RenderPyVis.render_lemma_graph)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/vis.py#L94)
```python
render_lemma_graph(debug=True)
```
Prepare the structure of the `NetworkX` graph to use for building
and returning a `PyVis` network to render.
Make sure to call beforehand: `TextGraphs.calc_phrase_ranks()`
* `debug` : `bool`
debugging flag
* *returns* : `pyvis.network.Network`
<a `pyvis.network.Network` interactive visualization
---
#### [`draw_communities` method](#textgraphs.RenderPyVis.draw_communities)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/vis.py#L166)
```python
draw_communities(spring_distance=1.4, debug=False)
```
Cluster the communities in the _lemma graph_, then draw a
`NetworkX` graph of the notes with a specific color for each
community.
Make sure to call beforehand: `TextGraphs.calc_phrase_ranks()`
* `spring_distance` : `float`
`NetworkX` parameter used to separate clusters visually
* `debug` : `bool`
debugging flag
* *returns* : `typing.Dict[int, int]`
a map of the calculated communities
---
#### [`generate_wordcloud` method](#textgraphs.RenderPyVis.generate_wordcloud)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/vis.py#L237)
```python
generate_wordcloud(background="black")
```
Generate a tag cloud from the given phrases.
Make sure to call beforehand: `TextGraphs.calc_phrase_ranks()`
* `background` : `str`
background color for the rendering
* *returns* : `wordcloud.wordcloud.WordCloud`
the rendering as a `wordcloud.WordCloud` object, which can be used to generate PNG images, etc.
## [`NodeStyle` class](#NodeStyle)
Dataclass used for styling PyVis nodes.
---
#### [`__setattr__` method](#textgraphs.NodeStyle.__setattr__)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main<string>#L2)
```python
__setattr__(name, value)
```
## [`GraphOfRelations` class](#GraphOfRelations)
Attempt to reproduce results published in
"INGRAM: Inductive Knowledge Graph Embedding via Relation Graphs"
<https://arxiv.org/abs/2305.19987>
---
#### [`__init__` method](#textgraphs.GraphOfRelations.__init__)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/gor.py#L100)
```python
__init__(source)
```
Constructor.
* `source` : `textgraphs.graph.SimpleGraph`
source graph to be transformed
---
#### [`load_ingram` method](#textgraphs.GraphOfRelations.load_ingram)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/gor.py#L125)
```python
load_ingram(json_file, debug=False)
```
Load data for a source graph, as illustrated in _lee2023ingram_
* `json_file` : `pathlib.Path`
path for the JSON dataset to load
* `debug` : `bool`
debugging flag
---
#### [`seeds` method](#textgraphs.GraphOfRelations.seeds)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/gor.py#L197)
```python
seeds(debug=False)
```
Prep data for the topological transform illustrated in _lee2023ingram_
* `debug` : `bool`
debugging flag
---
#### [`trace_source_graph` method](#textgraphs.GraphOfRelations.trace_source_graph)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/gor.py#L241)
```python
trace_source_graph()
```
Output a "seed" representation of the source graph.
---
#### [`construct_gor` method](#textgraphs.GraphOfRelations.construct_gor)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/gor.py#L311)
```python
construct_gor(debug=False)
```
Perform the topological transform described by _lee2023ingram_,
constructing a _graph of relations_ (GOR) and calculating
_affinity scores_ between entities in the GOR based on their
definitions:
> we measure the affinity between two relations by considering how many
entities are shared between them and how frequently they share the same
entity
* `debug` : `bool`
debugging flag
---
#### [`tally_frequencies` classmethod](#textgraphs.GraphOfRelations.tally_frequencies)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/gor.py#L348)
```python
tally_frequencies(counter)
```
Tally the frequency of shared entities.
* `counter` : `collections.Counter`
`counter` data collection for the rel_b/entity pairs
* *returns* : `int`
tallied values for one relation
---
#### [`get_affinity_scores` method](#textgraphs.GraphOfRelations.get_affinity_scores)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/gor.py#L401)
```python
get_affinity_scores(debug=False)
```
Reproduce metrics based on the example published in _lee2023ingram_
* `debug` : `bool`
debugging flag
* *returns* : `typing.Dict[tuple, float]`
the calculated affinity scores
---
#### [`trace_metrics` method](#textgraphs.GraphOfRelations.trace_metrics)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/gor.py#L454)
```python
trace_metrics(scores)
```
Compare the calculated affinity scores with results from a published
example.
* `scores` : `typing.Dict[tuple, float]`
the calculated affinity scores between pairs of relations (i.e., observed values)
* *returns* : `pandas.core.frame.DataFrame`
a `pandas.DataFrame` where the rows compare expected vs. observed affinity scores
---
#### [`render_gor_plt` method](#textgraphs.GraphOfRelations.render_gor_plt)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/gor.py#L522)
```python
render_gor_plt(scores)
```
Visualize the _graph of relations_ using `matplotlib`
* `scores` : `typing.Dict[tuple, float]`
the calculated affinity scores between pairs of relations (i.e., observed values)
---
#### [`render_gor_pyvis` method](#textgraphs.GraphOfRelations.render_gor_pyvis)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/gor.py#L563)
```python
render_gor_pyvis(scores)
```
Visualize the _graph of relations_ interactively using `PyVis`
* `scores` : `typing.Dict[tuple, float]`
the calculated affinity scores between pairs of relations (i.e., observed values)
* *returns* : `pyvis.network.Network`
a `pyvis.networkNetwork` representation of the transformed graph
## [`TransArc` class](#TransArc)
A data class representing one transformed rel-node-rel triple in
a _graph of relations_.
---
#### [`__repr__` method](#textgraphs.TransArc.__repr__)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/dataclasses.py#L232)
```python
__repr__()
```
## [`RelDir` class](#RelDir)
Enumeration for the directions of a relation.
## [`SheafSeed` class](#SheafSeed)
A data class representing a node from the source graph plus its
partial edge, based on a _Sheaf Theory_ decomposition of a graph.
---
#### [`__repr__` method](#textgraphs.SheafSeed.__repr__)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/dataclasses.py#L232)
```python
__repr__()
```
## [`Affinity` class](#Affinity)
A data class representing the affinity scores from one entity
in the transformed _graph of relations_.
NB: there are much more efficient ways to calculate these
_affinity scores_ using sparse tensor algebra; this approach
illustrates the process -- for research and debugging.
---
#### [`__repr__` method](#textgraphs.Affinity.__repr__)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/dataclasses.py#L232)
```python
__repr__()
```
---
## [module functions](#textgraphs)
---
#### [`calc_quantile_bins` function](#textgraphs.calc_quantile_bins)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/util.py#L65)
```python
calc_quantile_bins(num_rows)
```
Calculate the bins to use for a quantile stripe,
using [`numpy.linspace`](https://numpy.org/doc/stable/reference/generated/numpy.linspace.html)
* `num_rows` : `int`
number of rows in the target dataframe
* *returns* : `numpy.ndarray`
calculated bins, as a `numpy.ndarray`
---
#### [`get_repo_version` function](#textgraphs.get_repo_version)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/version.py#L50)
```python
get_repo_version()
```
Access the Git repository information and return items to identify
the version/commit running in production.
* *returns* : `typing.Tuple[str, str]`
version tag and commit hash
---
#### [`root_mean_square` function](#textgraphs.root_mean_square)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/util.py#L116)
```python
root_mean_square(values)
```
Calculate the [*root mean square*](https://mathworld.wolfram.com/Root-Mean-Square.html)
of the values in the given list.
* `values` : `typing.List[float]`
list of values to use in the RMS calculation
* *returns* : `float`
RMS metric as a float
---
#### [`stripe_column` function](#textgraphs.stripe_column)
[*\[source\]*](https://github.com/DerwenAI/textgraphs/blob/main/textgraphs/util.py#L88)
```python
stripe_column(values, bins)
```
Stripe a column in a dataframe, by interpolating quantiles into a set of discrete indexes.
* `values` : `list`
list of values to stripe
* `bins` : `int`
quantile bins; see [`calc_quantile_bins()`](#calc_quantile_bins-function)
* *returns* : `numpy.ndarray`
the striped column values, as a `numpy.ndarray`
---
## [module types](#textgraphs)
|