File size: 3,527 Bytes
334adc2
 
9668774
334adc2
9668774
 
334adc2
1aa5d0c
334adc2
 
 
 
 
 
 
 
 
 
 
 
 
 
9668774
 
334adc2
 
 
 
 
 
9668774
334adc2
 
 
 
9668774
334adc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9668774
 
334adc2
 
9668774
 
 
6ad9946
9668774
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import pandas as pd
import PIL
from PIL import Image
from PIL import ImageDraw
import gradio as gr
import torch
import easyocr

torch.hub.download_url_to_file('https://github.com/JaidedAI/EasyOCR/raw/master/examples/english.png', 'english.png')
torch.hub.download_url_to_file('https://github.com/JaidedAI/EasyOCR/raw/master/examples/thai.jpg', 'thai.jpg')
torch.hub.download_url_to_file('https://github.com/JaidedAI/EasyOCR/raw/master/examples/french.jpg', 'french.jpg')
torch.hub.download_url_to_file('https://github.com/JaidedAI/EasyOCR/raw/master/examples/chinese.jpg', 'chinese.jpg')
torch.hub.download_url_to_file('https://github.com/JaidedAI/EasyOCR/raw/master/examples/japanese.jpg', 'japanese.jpg')
torch.hub.download_url_to_file('https://github.com/JaidedAI/EasyOCR/raw/master/examples/korean.png', 'korean.png')
torch.hub.download_url_to_file('https://i.imgur.com/mwQFd7G.jpeg', 'Hindi.jpeg')

def draw_boxes(image, bounds, color='yellow', width=2):
    draw = ImageDraw.Draw(image)
    for bound in bounds:
        p0, p1, p2, p3 = bound[0]
        draw.line([*p0, *p1, *p2, *p3, *p0], fill=color, width=width)
    return image

def inference(img, lang):
    reader = easyocr.Reader(lang)
    bounds = reader.readtext(img.name)
    im = PIL.Image.open(img.name)
    draw_boxes(im, bounds)
    im.save('result.jpg')
    return ['result.jpg', pd.DataFrame(bounds).iloc[: , 1:]]

title = 'EasyOCR'
description = 'Gradio demo for EasyOCR. EasyOCR demo supports 80+ languages.To use it, simply upload your image and choose a language from the dropdown menu, or click one of the examples to load them. Read more at the links below.'
article = "<p style='text-align: center'><a href='https://www.jaided.ai/easyocr/'>Ready-to-use OCR with 80+ supported languages and all popular writing scripts including Latin, Chinese, Arabic, Devanagari, Cyrillic and etc.</a> | <a href='https://github.com/JaidedAI/EasyOCR'>Github Repo</a></p>"
examples = [['english.png',['en']],['thai.jpg',['th']],['french.jpg',['fr', 'en']],['chinese.jpg',['ch_sim', 'en']],['japanese.jpg',['ja', 'en']],['korean.png',['ko', 'en']],['Hindi.jpeg',['hi', 'en']]]
css = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}"
choices = [
    "abq",
    "ady",
    "af",
    "ang",
    "ar",
    "as",
    "ava",
    "az",
    "be",
    "bg",
    "bh",
    "bho",
    "bn",
    "bs",
    "ch_sim",
    "ch_tra",
    "che",
    "cs",
    "cy",
    "da",
    "dar",
    "de",
    "en",
    "es",
    "et",
    "fa",
    "fr",
    "ga",
    "gom",
    "hi",
    "hr",
    "hu",
    "id",
    "inh",
    "is",
    "it",
    "ja",
    "kbd",
    "kn",
    "ko",
    "ku",
    "la",
    "lbe",
    "lez",
    "lt",
    "lv",
    "mah",
    "mai",
    "mi",
    "mn",
    "mr",
    "ms",
    "mt",
    "ne",
    "new",
    "nl",
    "no",
    "oc",
    "pi",
    "pl",
    "pt",
    "ro",
    "ru",
    "rs_cyrillic",
    "rs_latin",
    "sck",
    "sk",
    "sl",
    "sq",
    "sv",
    "sw",
    "ta",
    "tab",
    "te",
    "th",
    "tjk",
    "tl",
    "tr",
    "ug",
    "uk",
    "ur",
    "uz",
    "vi"
]
gr.Interface(
    inference,
    [gr.inputs.Image(type='file', label='Input'),gr.inputs.CheckboxGroup(choices, type="value", default=['en'], label='language')],
    [gr.outputs.Image(type='file', label='Output'), gr.outputs.Dataframe(headers=['text', 'confidence'])],
    title=title,
    description=description,
    article=article,
    examples=examples,
    css=css,
    enable_queue=True
    ).launch(debug=True)