Spaces:
Runtime error
Runtime error
File size: 3,720 Bytes
334adc2 9668774 334adc2 9668774 334adc2 ae0db67 0851882 f459ff6 0851882 1aa5d0c 9240006 eb90322 9240006 224c718 0851882 be299bc 85f0f8f e795847 cd02c9c 2ad20b3 85f0f8f e795847 93ce6b7 d289e37 f450985 cc6f2b9 d289e37 f450985 d289e37 df45ea5 32d36e6 be299bc 32d36e6 2f1cdb1 9668774 644d5b5 f4de4aa 644d5b5 f4de4aa 644d5b5 f4de4aa 20e28ec c5c4e79 334adc2 f459ff6 d2b87eb be299bc 137d498 be299bc ba29956 e795847 be299bc e795847 9668774 9240006 be299bc 8a2ee58 9240006 334adc2 20e28ec f4de4aa 334adc2 9668774 2c4e7f5 93107a1 e795847 891aa18 9668774 6ad9946 9668774 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
import pandas as pd
import PIL
from PIL import Image
from PIL import ImageDraw
import gradio as gr
import torch
import easyocr
import cv2 as cv
import math
from numpy import asarray
import numpy as np
torch.hub.download_url_to_file('https://i.pinimg.com/736x/93/d3/54/93d354497ea26d5dc181055b9356cf79.jpg', 'korean.jpg')
torch.hub.download_url_to_file('https://64.media.tumblr.com/1a5796817934a179664508693cae82d3/67c2ea7948c385cc-1b/s1280x1920/a70d4fcc0a5528de415b024db4ee6036da9c4c35.jpg', 'chinese.jpg')
torch.hub.download_url_to_file('https://jtalkonline.com/wp-content/uploads/2014/06/ichigo-bleach-manga-japanese.jpg', 'japanese.jpg')
torch.hub.download_url_to_file('https://img.mghubcdn.com/file/imghub/moriarty-the-patriot/68/10.jpg', 'english.jpg')
def midpoint(x1, y1, x2, y2):
x_mid = int((x1 + x2)/2)
y_mid = int((y1 + y2)/2)
return (x_mid, y_mid)
def draw_boxes(img, bounds, color='yellow', width=2):
mask = np.zeros(img.shape[:2], dtype="uint8")
for bound in bounds:
pts = np.array([bound[0]], np.int32)
pts = pts.reshape((-1,1,2))
cv.fillPoly(image, pts, color =(255,255,255))
return (mask)
def draw_mask(img, bounds):
mask = np.zeros(img.shape[:2], dtype="uint8")
for bound in bounds:
box0, box1, box2, box3 = bound[0]
x0, y0 = box0
x1, y1 = box1
x2, y2 = box2
x3, y3 = box3
x_mid0, y_mid0 = midpoint(x1, y1, x2, y2)
x_mid1, y_mi1 = midpoint(x0, y0, x3, y3)
thickness = int(math.sqrt((x2 - x1)**2 + (y2 - y1)**2))
cv.line(mask, (x_mid0, y_mid0), (x_mid1, y_mi1), 255, thickness)
img = cv.inpaint(img, mask, 1, cv.INPAINT_NS)
return(img)
def inference(img, lang):
if lang == "english":
lang = ['en']
elif lang == "chinese":
lang = ['ch_sim']
elif lang == "korean":
lang = ['ko']
else:
lang = ['ja']
reader = easyocr.Reader(lang)
bounds = reader.readtext(img.name)
im = PIL.Image.open(img.name)
img_array = np.array(im)
img = draw_boxes(img_array, bounds)
im = draw_mask(img_array, bounds)
img = Image.fromarray(img)
im = Image.fromarray(im, 'RGB')
lang = ""
img.save('box.jpg')
im.save('result.jpg')
return ['box.jpg', 'result.jpg', pd.DataFrame(bounds). iloc[: , 1:2]]
title = 'Manga Image Cleaner'
description = 'Image inpainting and text detection demo with the use of EasyOCR and CV2. To use it, simply upload your image and choose a language from the dropdown menu, or click one of the examples to test the program.'
article = "<p style='text-align: center'> <a>Ready-to-use image inpainting with supported languages such as: Chinese, English, Japanese, and Korean</a> | <a href='https://github.com/JaidedAI/EasyOCR'>Github OCR Repo</a> | <a href='https://towardsdatascience.com/remove-text-from-images-using-cv2-and-keras-ocr-24e7612ae4f4'>CV2 Reference</a></p>"
css = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}"
examples = [['chinese.jpg',"chinese"], ['english.jpg',"english"], ['japanese.jpg',"japanese"], ['korean.jpg',"korean"]]
choices = [
"chinese",
"english",
"japanese",
"korean"
]
gr.Interface(
inference,
[gr.inputs.Image(type='file', label='Input'),gr.inputs.Dropdown(choices, type="value", default="korean", label='language')],
[gr.outputs.Image(type='file', label='Output'),
gr.outputs.Image(type='file', label='Output'),
gr.outputs.Dataframe()],
title=title,
description=description,
article=article,
examples=examples,
css=css,
enable_queue=True
).launch(debug=True) |