File size: 19,527 Bytes
40a3d50 dcf791a 40a3d50 dcf791a 40a3d50 dcf791a 40a3d50 dcf791a 40a3d50 dcf791a 40a3d50 dcf791a 40a3d50 dcf791a 40a3d50 dcf791a 40a3d50 dcf791a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
from fastapi import FastAPI, HTTPException, Header, Depends, Request
from fastapi.responses import JSONResponse
from fastapi.security import HTTPBasic, HTTPBasicCredentials
from fastapi.exceptions import RequestValidationError
from typing import Optional, List
from pydantic import BaseModel, ValidationError
import pandas as pd
import numpy as np
import os
from transformers import pipeline
from filesplit.merge import Merge
import tensorflow as tf
import string
import re
from tensorflow import keras
from keras_nlp.layers import TransformerEncoder
from tensorflow.keras import layers
from tensorflow.keras.utils import plot_model
api = FastAPI()
dataPath = "data"
# ===== Keras ====
strip_chars = string.punctuation + "¿"
strip_chars = strip_chars.replace("[", "")
strip_chars = strip_chars.replace("]", "")
def custom_standardization(input_string):
lowercase = tf.strings.lower(input_string)
lowercase=tf.strings.regex_replace(lowercase, "[à]", "a")
return tf.strings.regex_replace(
lowercase, f"[{re.escape(strip_chars)}]", "")
@st.cache_data
def load_vocab(file_path):
with open(file_path, "r", encoding="utf-8") as file:
return file.read().split('\n')[:-1]
def decode_sequence_rnn(input_sentence, src, tgt):
global translation_model
vocab_size = 15000
sequence_length = 50
source_vectorization = layers.TextVectorization(
max_tokens=vocab_size,
output_mode="int",
output_sequence_length=sequence_length,
standardize=custom_standardization,
vocabulary = load_vocab(dataPath+"/vocab_"+src+".txt"),
)
target_vectorization = layers.TextVectorization(
max_tokens=vocab_size,
output_mode="int",
output_sequence_length=sequence_length + 1,
standardize=custom_standardization,
vocabulary = load_vocab(dataPath+"/vocab_"+tgt+".txt"),
)
tgt_vocab = target_vectorization.get_vocabulary()
tgt_index_lookup = dict(zip(range(len(tgt_vocab)), tgt_vocab))
max_decoded_sentence_length = 50
tokenized_input_sentence = source_vectorization([input_sentence])
decoded_sentence = "[start]"
for i in range(max_decoded_sentence_length):
tokenized_target_sentence = target_vectorization([decoded_sentence])
next_token_predictions = translation_model.predict(
[tokenized_input_sentence, tokenized_target_sentence], verbose=0)
sampled_token_index = np.argmax(next_token_predictions[0, i, :])
sampled_token = tgt_index_lookup[sampled_token_index]
decoded_sentence += " " + sampled_token
if sampled_token == "[end]":
break
return decoded_sentence[8:-6]
# ===== Enf of Keras ====
# ===== Transformer section ====
class TransformerDecoder(layers.Layer):
def __init__(self, embed_dim, dense_dim, num_heads, **kwargs):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.dense_dim = dense_dim
self.num_heads = num_heads
self.attention_1 = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim)
self.attention_2 = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim)
self.dense_proj = keras.Sequential(
[layers.Dense(dense_dim, activation="relu"),
layers.Dense(embed_dim),]
)
self.layernorm_1 = layers.LayerNormalization()
self.layernorm_2 = layers.LayerNormalization()
self.layernorm_3 = layers.LayerNormalization()
self.supports_masking = True
def get_config(self):
config = super().get_config()
config.update({
"embed_dim": self.embed_dim,
"num_heads": self.num_heads,
"dense_dim": self.dense_dim,
})
return config
def get_causal_attention_mask(self, inputs):
input_shape = tf.shape(inputs)
batch_size, sequence_length = input_shape[0], input_shape[1]
i = tf.range(sequence_length)[:, tf.newaxis]
j = tf.range(sequence_length)
mask = tf.cast(i >= j, dtype="int32")
mask = tf.reshape(mask, (1, input_shape[1], input_shape[1]))
mult = tf.concat(
[tf.expand_dims(batch_size, -1),
tf.constant([1, 1], dtype=tf.int32)], axis=0)
return tf.tile(mask, mult)
def call(self, inputs, encoder_outputs, mask=None):
causal_mask = self.get_causal_attention_mask(inputs)
if mask is not None:
padding_mask = tf.cast(
mask[:, tf.newaxis, :], dtype="int32")
padding_mask = tf.minimum(padding_mask, causal_mask)
else:
padding_mask = mask
attention_output_1 = self.attention_1(
query=inputs,
value=inputs,
key=inputs,
attention_mask=causal_mask)
attention_output_1 = self.layernorm_1(inputs + attention_output_1)
attention_output_2 = self.attention_2(
query=attention_output_1,
value=encoder_outputs,
key=encoder_outputs,
attention_mask=padding_mask,
)
attention_output_2 = self.layernorm_2(
attention_output_1 + attention_output_2)
proj_output = self.dense_proj(attention_output_2)
return self.layernorm_3(attention_output_2 + proj_output)
class PositionalEmbedding(layers.Layer):
def __init__(self, sequence_length, input_dim, output_dim, **kwargs):
super().__init__(**kwargs)
self.token_embeddings = layers.Embedding(
input_dim=input_dim, output_dim=output_dim)
self.position_embeddings = layers.Embedding(
input_dim=sequence_length, output_dim=output_dim)
self.sequence_length = sequence_length
self.input_dim = input_dim
self.output_dim = output_dim
def call(self, inputs):
length = tf.shape(inputs)[-1]
positions = tf.range(start=0, limit=length, delta=1)
embedded_tokens = self.token_embeddings(inputs)
embedded_positions = self.position_embeddings(positions)
return embedded_tokens + embedded_positions
def compute_mask(self, inputs, mask=None):
return tf.math.not_equal(inputs, 0)
def get_config(self):
config = super(PositionalEmbedding, self).get_config()
config.update({
"output_dim": self.output_dim,
"sequence_length": self.sequence_length,
"input_dim": self.input_dim,
})
return config
def decode_sequence_tranf(input_sentence, src, tgt):
global translation_model
vocab_size = 15000
sequence_length = 30
source_vectorization = layers.TextVectorization(
max_tokens=vocab_size,
output_mode="int",
output_sequence_length=sequence_length,
standardize=custom_standardization,
vocabulary = load_vocab(dataPath+"/vocab_"+src+".txt"),
)
target_vectorization = layers.TextVectorization(
max_tokens=vocab_size,
output_mode="int",
output_sequence_length=sequence_length + 1,
standardize=custom_standardization,
vocabulary = load_vocab(dataPath+"/vocab_"+tgt+".txt"),
)
tgt_vocab = target_vectorization.get_vocabulary()
tgt_index_lookup = dict(zip(range(len(tgt_vocab)), tgt_vocab))
max_decoded_sentence_length = 50
tokenized_input_sentence = source_vectorization([input_sentence])
decoded_sentence = "[start]"
for i in range(max_decoded_sentence_length):
tokenized_target_sentence = target_vectorization(
[decoded_sentence])[:, :-1]
predictions = translation_model(
[tokenized_input_sentence, tokenized_target_sentence])
sampled_token_index = np.argmax(predictions[0, i, :])
sampled_token = tgt_index_lookup[sampled_token_index]
decoded_sentence += " " + sampled_token
if sampled_token == "[end]":
break
return decoded_sentence[8:-6]
# ==== End Transforformer section ====
def load_all_data():
merge = Merge( dataPath+"/rnn_en-fr_split", dataPath, "seq2seq_rnn-model-en-fr.h5").merge(cleanup=False)
merge = Merge( dataPath+"/rnn_fr-en_split", dataPath, "seq2seq_rnn-model-fr-en.h5").merge(cleanup=False)
rnn_en_fr = keras.models.load_model(dataPath+"/seq2seq_rnn-model-en-fr.h5", compile=False)
rnn_fr_en = keras.models.load_model(dataPath+"/seq2seq_rnn-model-fr-en.h5", compile=False)
rnn_en_fr.compile(optimizer="rmsprop", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
rnn_fr_en.compile(optimizer="rmsprop", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
custom_objects = {"TransformerDecoder": TransformerDecoder, "PositionalEmbedding": PositionalEmbedding}
with keras.saving.custom_object_scope(custom_objects):
transformer_en_fr = keras.models.load_model( "data/transformer-model-en-fr.h5")
transformer_fr_en = keras.models.load_model( "data/transformer-model-fr-en.h5")
merge = Merge( "data/transf_en-fr_weight_split", "data", "transformer-model-en-fr.weights.h5").merge(cleanup=False)
merge = Merge( "data/transf_fr-en_weight_split", "data", "transformer-model-fr-en.weights.h5").merge(cleanup=False)
transformer_en_fr.compile(optimizer="rmsprop", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
transformer_fr_en.compile(optimizer="rmsprop", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
return translation_en_fr, translation_fr_en, rnn_en_fr, rnn_fr_en, transformer_en_fr, transformer_fr_en
n1 = 0
translation_en_fr, translation_fr_en, rnn_en_fr, rnn_fr_en, transformer_en_fr, transformer_fr_en = load_all_data()
def display_translation(n1, Lang,model_type):
global df_data_src, df_data_tgt, placeholder
placeholder = st.empty()
with st.status(":sunglasses:", expanded=True):
s = df_data_src.iloc[n1:n1+5][0].tolist()
s_trad = []
s_trad_ref = df_data_tgt.iloc[n1:n1+5][0].tolist()
source = Lang[:2]
target = Lang[-2:]
for i in range(3):
if model_type==1:
s_trad.append(decode_sequence_rnn(s[i], source, target))
else:
s_trad.append(decode_sequence_tranf(s[i], source, target))
st.write("**"+source+" :** :blue["+ s[i]+"]")
st.write("**"+target+" :** "+s_trad[-1])
st.write("**ref. :** "+s_trad_ref[i])
st.write("")
with placeholder:
st.write("<p style='text-align:center;background-color:red; color:white')>Score Bleu = "+str(int(round(corpus_bleu(s_trad,[s_trad_ref]).score,0)))+"%</p>", \
unsafe_allow_html=True)
def find_lang_label(lang_sel):
global lang_tgt, label_lang
return label_lang[lang_tgt.index(lang_sel)]
@api.get('/', name="Vérification que l'API fonctionne")
def check_api():
load_all_data()
return {'message': "L'API fonctionne"}
@api.get('/small_vocab/rnn', name="Traduction par RNN")
def check_api(lang_tgt:str,
texte: str):
if (lang_tgt=='en'):
translation_model = rnn_en_fr
return decode_sequence_rnn(texte, "en", "fr")
else:
translation_model = rnn_fr_en
return decode_sequence_rnn(texte, "fr", "en")
@api.get('/small_vocab/transformer', name="Traduction par Transformer")
def check_api(lang_tgt:str,
texte: str):
if (lang_tgt=='en'):
translation_model = rnn_en_fr
return decode_sequence_tranf(texte, "en", "fr")
else:
translation_model = rnn_fr_en
return decode_sequence_tranf(texte, "fr", "en")
'''
def run():
global n1, df_data_src, df_data_tgt, translation_model, placeholder, model_speech
global df_data_en, df_data_fr, lang_classifier, translation_en_fr, translation_fr_en
global lang_tgt, label_lang
st.write("")
st.title(tr(title))
#
st.write("## **"+tr("Explications")+" :**\n")
st.markdown(tr(
"""
Enfin, nous avons réalisé une traduction :red[**Seq2Seq**] ("Sequence-to-Sequence") avec des :red[**réseaux neuronaux**].
""")
, unsafe_allow_html=True)
st.markdown(tr(
"""
La traduction Seq2Seq est une méthode d'apprentissage automatique qui permet de traduire des séquences de texte d'une langue à une autre en utilisant
un :red[**encodeur**] pour capturer le sens du texte source, un :red[**décodeur**] pour générer la traduction,
avec un ou plusieurs :red[**vecteurs d'intégration**] qui relient les deux, afin de transmettre le contexte, l'attention ou la position.
""")
, unsafe_allow_html=True)
st.image("assets/deepnlp_graph1.png",use_column_width=True)
st.markdown(tr(
"""
Nous avons mis en oeuvre ces techniques avec des Réseaux Neuronaux Récurrents (GRU en particulier) et des Transformers
Vous en trouverez :red[**5 illustrations**] ci-dessous.
""")
, unsafe_allow_html=True)
# Utilisation du module translate
lang_tgt = ['en','fr','af','ak','sq','de','am','en','ar','hy','as','az','ba','bm','eu','bn','be','my','bs','bg','ks','ca','ny','zh','si','ko','co','ht','hr','da','dz','gd','es','eo','et','ee','fo','fj','fi','fr','fy','gl','cy','lg','ka','el','gn','gu','ha','he','hi','hu','ig','id','iu','ga','is','it','ja','kn','kk','km','ki','rw','ky','rn','ku','lo','la','lv','li','ln','lt','lb','mk','ms','ml','dv','mg','mt','mi','mr','mn','nl','ne','no','nb','nn','oc','or','ug','ur','uz','ps','pa','fa','pl','pt','ro','ru','sm','sg','sa','sc','sr','sn','sd','sk','sl','so','st','su','sv','sw','ss','tg','tl','ty','ta','tt','cs','te','th','bo','ti','to','ts','tn','tr','tk','tw','uk','vi','wo','xh','yi']
label_lang = ['Anglais','Français','Afrikaans','Akan','Albanais','Allemand','Amharique','Anglais','Arabe','Arménien','Assamais','Azéri','Bachkir','Bambara','Basque','Bengali','Biélorusse','Birman','Bosnien','Bulgare','Cachemiri','Catalan','Chichewa','Chinois','Cingalais','Coréen','Corse','Créolehaïtien','Croate','Danois','Dzongkha','Écossais','Espagnol','Espéranto','Estonien','Ewe','Féroïen','Fidjien','Finnois','Français','Frisonoccidental','Galicien','Gallois','Ganda','Géorgien','Grecmoderne','Guarani','Gujarati','Haoussa','Hébreu','Hindi','Hongrois','Igbo','Indonésien','Inuktitut','Irlandais','Islandais','Italien','Japonais','Kannada','Kazakh','Khmer','Kikuyu','Kinyarwanda','Kirghiz','Kirundi','Kurde','Lao','Latin','Letton','Limbourgeois','Lingala','Lituanien','Luxembourgeois','Macédonien','Malais','Malayalam','Maldivien','Malgache','Maltais','MaorideNouvelle-Zélande','Marathi','Mongol','Néerlandais','Népalais','Norvégien','Norvégienbokmål','Norvégiennynorsk','Occitan','Oriya','Ouïghour','Ourdou','Ouzbek','Pachto','Pendjabi','Persan','Polonais','Portugais','Roumain','Russe','Samoan','Sango','Sanskrit','Sarde','Serbe','Shona','Sindhi','Slovaque','Slovène','Somali','SothoduSud','Soundanais','Suédois','Swahili','Swati','Tadjik','Tagalog','Tahitien','Tamoul','Tatar','Tchèque','Télougou','Thaï','Tibétain','Tigrigna','Tongien','Tsonga','Tswana','Turc','Turkmène','Twi','Ukrainien','Vietnamien','Wolof','Xhosa','Yiddish']
lang_src = {'ar': 'arabic', 'bg': 'bulgarian', 'de': 'german', 'el':'modern greek', 'en': 'english', 'es': 'spanish', 'fr': 'french', \
'hi': 'hindi', 'it': 'italian', 'ja': 'japanese', 'nl': 'dutch', 'pl': 'polish', 'pt': 'portuguese', 'ru': 'russian', 'sw': 'swahili', \
'th': 'thai', 'tr': 'turkish', 'ur': 'urdu', 'vi': 'vietnamese', 'zh': 'chinese'}
st.write("#### "+tr("Choisissez le type de traduction")+" :")
chosen_id = tab_bar(data=[
TabBarItemData(id="tab1", title="small vocab", description=tr("avec Keras et un RNN")),
TabBarItemData(id="tab2", title="small vocab", description=tr("avec Keras et un Transformer")),
TabBarItemData(id="tab3", title=tr("Phrase personnelle"), description=tr("à écrire")),
TabBarItemData(id="tab4", title=tr("Phrase personnelle"), description=tr("à dicter")),
TabBarItemData(id="tab5", title=tr("Funny translation !"), description=tr("avec le Fine Tuning"))],
default="tab1")
if (chosen_id == "tab1") or (chosen_id == "tab2") :
if (chosen_id == "tab1"):
st.write("<center><h5><b>"+tr("Schéma d'un Réseau de Neurones Récurrents")+"</b></h5></center>", unsafe_allow_html=True)
st.image("assets/deepnlp_graph3.png",use_column_width=True)
else:
st.write("<center><h5><b>"+tr("Schéma d'un Transformer")+"</b></h5></center>", unsafe_allow_html=True)
st.image("assets/deepnlp_graph12.png",use_column_width=True)
st.write("## **"+tr("Paramètres")+" :**\n")
TabContainerHolder = st.container()
Sens = TabContainerHolder.radio(tr('Sens')+':',('Anglais -> Français','Français -> Anglais'), horizontal=True)
Lang = ('en_fr' if Sens=='Anglais -> Français' else 'fr_en')
if (Lang=='en_fr'):
df_data_src = df_data_en
df_data_tgt = df_data_fr
if (chosen_id == "tab1"):
translation_model = rnn_en_fr
else:
translation_model = transformer_en_fr
else:
df_data_src = df_data_fr
df_data_tgt = df_data_en
if (chosen_id == "tab1"):
translation_model = rnn_fr_en
else:
translation_model = transformer_fr_en
sentence1 = st.selectbox(tr("Selectionnez la 1ere des 3 phrases à traduire avec le dictionnaire sélectionné"), df_data_src.iloc[:-4],index=int(n1) )
n1 = df_data_src[df_data_src[0]==sentence1].index.values[0]
st.write("## **"+tr("Résultats")+" :**\n")
if (chosen_id == "tab1"):
display_translation(n1, Lang,1)
else:
display_translation(n1, Lang,2)
st.write("## **"+tr("Details sur la méthode")+" :**\n")
if (chosen_id == "tab1"):
st.markdown(tr(
"""
Nous avons utilisé 2 Gated Recurrent Units.
Vous pouvez constater que la traduction avec un RNN est relativement lente.
Ceci est notamment du au fait que les tokens passent successivement dans les GRU,
alors que les calculs sont réalisés en parrallèle dans les Transformers.
Le score BLEU est bien meilleur que celui des traductions mot à mot.
<br>
""")
, unsafe_allow_html=True)
else:
st.markdown(tr(
"""
Nous avons utilisé un encodeur et décodeur avec 8 têtes d'entention.
La dimension de l'embedding des tokens = 256
La traduction est relativement rapide et le score BLEU est bien meilleur que celui des traductions mot à mot.
<br>
""")
, unsafe_allow_html=True)
st.write("<center><h5>"+tr("Architecture du modèle utilisé")+":</h5>", unsafe_allow_html=True)
plot_model(translation_model, show_shapes=True, show_layer_names=True, show_layer_activations=True,rankdir='TB',to_file=st.session_state.ImagePath+'/model_plot.png')
st.image(st.session_state.ImagePath+'/model_plot.png',use_column_width=True)
st.write("</center>", unsafe_allow_html=True)
'''
|