Spaces:
Running
Running
File size: 20,464 Bytes
569f484 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 |
import copy
import json
import logging
import math
import os
import re
import random
from dataclasses import dataclass, field
from typing import Dict, List, Optional
import numpy as np
import torch
from PIL import Image
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import Dataset
from transformers import AutoProcessor, AutoTokenizer
import logging
logger = logging.getLogger(__name__)
llama3_chat_template = "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}"
class SupervisedDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(
self,
raw_data,
transform,
tokenizer,
slice_config,
llm_type="minicpm",
patch_size=14,
query_nums=64,
batch_vision=False,
max_length=2048,
):
super(SupervisedDataset, self).__init__()
self.raw_data = raw_data
self.tokenizer = tokenizer
self.transform = transform
self.slice_config = slice_config
self.llm_type = llm_type
self.patch_size = patch_size
self.query_nums=query_nums
self.batch_vision = batch_vision
self.max_length = max_length
def __len__(self):
return len(self.raw_data)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
try:
if isinstance(self.raw_data[i]["image"], str):
images_dict = { "<image>" : Image.open(self.raw_data[i]["image"]).convert("RGB") }
elif isinstance(self.raw_data[i]["image"], Dict):
### for multi-images input, the template for every image is <image_xx>, such as <image_00>, <image_01>
images_dict = {img_name : Image.open(img_path).convert("RGB") for img_name, img_path in self.raw_data[i]["image"].items()}
ret = preprocess(
images_dict,
self.raw_data[i]["conversations"],
self.tokenizer,
self.transform,
query_nums=self.query_nums,
slice_config=self.slice_config,
llm_type=self.llm_type,
patch_size=self.patch_size,
batch_vision=self.batch_vision,
max_length=self.max_length
)
ret = dict(
input_ids=ret["input_ids"],
position_ids=ret["position_ids"],
labels=ret["target"],
attention_mask=torch.ones_like(ret["input_ids"], dtype=torch.bool),
pixel_values=ret["pixel_values"],
tgt_sizes=ret["tgt_sizes"],
image_bound=ret["image_bound"],
)
except:
logger.error(f"data fetch error")
return self.__getitem__(random.randint(0, len(self)))
return ret
def data_collator(examples, padding_value=0, max_length=2048):
def trim_and_pad(seq, batch_first, padding_value):
return pad_sequence([s[:max_length] for s in seq], batch_first=True, padding_value=padding_value)
input_ids = trim_and_pad(
[example["input_ids"] for example in examples],
batch_first=True,
padding_value=padding_value,
)
position_ids = trim_and_pad(
[example["position_ids"] for example in examples],
batch_first=True,
padding_value=padding_value,
)
targets = trim_and_pad(
[example["labels"] for example in examples],
batch_first=True,
padding_value=-100,
)
attention_mask = trim_and_pad(
[example["attention_mask"] for example in examples],
batch_first=True,
padding_value=padding_value,
)
pixel_values = [example["pixel_values"] for example in examples]
image_bound = [example["image_bound"] for example in examples]
tgt_sizes = [example["tgt_sizes"] for example in examples]
return {
"input_ids": input_ids,
"position_ids": position_ids,
"labels": targets,
"attention_mask": attention_mask,
"image_bound": image_bound,
"tgt_sizes": tgt_sizes,
"pixel_values": pixel_values,
}
def conversation_to_ids(conversation, tokenizer, llm_type=None, new_schema=False, max_length=2048):
"""
for single image multi-turn conversation
conversation: [{'role': 'user', 'content': 'Describe this image'},
{'role': 'assistant', 'content': 'This is a cat.'}]
"""
if llm_type == "llama3":
input_ids, context, raw_msg = conversation_to_ids_llama3(
conversation, tokenizer
)
elif llm_type == "qwen2":
input_ids, context, raw_msg = conversation_to_ids_qwen2(
conversation, tokenizer
)
else:
input_ids, context, raw_msg = conversation_to_ids_minicpm(
conversation, tokenizer
)
ids = torch.from_numpy(np.hstack(input_ids, dtype=np.int32))
context = torch.from_numpy(np.hstack(context, dtype=np.int8))
if input_ids.shape[-1] > max_length:
ids =ids[:max_length]
context = context[:max_length]
logger.warning(f"The input length ({input_ids.shape[-1]}) exceeds the model's maximum length ({max_length}), so it has been truncated")
if torch.all(context):
logger.error("No tokens available to compute loss.")
raise Exception("No tokens available to compute loss.")
# build target
target = torch.full_like(ids, -100, dtype=torch.int32)
for i in range(1, len(ids)):
if context[i] == 0:
target[i - 1] = ids[i]
if context[i] == 1 and context[i - 1] == 0:
if hasattr(tokenizer, "eot_id"):
target[i - 1] = tokenizer.eot_id
else:
target[i - 1] = tokenizer.eos_id
# build image bound
if new_schema:
start_cond = (ids == tokenizer.im_start_id) | (ids == tokenizer.slice_start_id)
end_cond = (ids == tokenizer.im_end_id) | (ids == tokenizer.slice_end_id)
image_start_tokens = torch.where(start_cond)[0]
image_start_tokens += 1
image_end_tokens = torch.where(end_cond)[0]
else:
image_start_tokens = torch.where(ids == tokenizer.im_start_id)[0]
image_start_tokens += 1
image_end_tokens = torch.where(ids == tokenizer.im_end_id)[0]
if len(image_start_tokens) != len(image_end_tokens):
logger.error("image start token != image end tokens")
raise Exception("image start token != image end tokens")
if len(image_start_tokens) > 0:
image_bound = torch.hstack(
[image_start_tokens.unsqueeze(-1), image_end_tokens.unsqueeze(-1)]
)
else:
image_bound = []
position_ids = torch.arange(ids.size(0)).long()
return {
"input_ids": ids,
"target": target,
"image_bound": image_bound,
"raw_msg": raw_msg,
"position_ids": position_ids
}
def conversation_to_ids_minicpm(conversation, tokenizer):
raw_msg = ""
input_ids = []
context = []
for idx, msg in enumerate(conversation):
role = msg["role"]
message = msg["content"]
assert role in ["user", "assistant"]
if role == "user":
prefix = "<用户>"
else:
prefix = "<AI>"
# append eos
if idx == len(conversation) - 1:
message = message + tokenizer.eos_token
prefix_ids = tokenizer.encode(prefix)[1:] # remove bos
message_ids = tokenizer.encode(message)[1:]
input_ids.append(prefix_ids)
input_ids.append(message_ids)
context.append(np.ones((len(prefix_ids),), dtype=np.int8))
if role == "assistant":
context.append(np.zeros((len(message_ids),), dtype=np.int8))
else:
context.append(np.ones((len(message_ids),), dtype=np.int8))
raw_msg += prefix + message
return input_ids, context, raw_msg
def conversation_to_ids_llama3(conversation, tokenizer):
raw_msg = ""
input_ids = []
context = []
raw_msg = tokenizer.apply_chat_template(
conversation, tokenize=False, add_generation_prompt=False, chat_template=llama3_chat_template,
)
input_ids = tokenizer.apply_chat_template(
conversation, tokenize=True, add_generation_prompt=False, chat_template=llama3_chat_template,
)
input_ids = np.array(input_ids)
start_header_idxs = np.where(
input_ids == tokenizer.convert_tokens_to_ids("<|start_header_id|>")
)[0]
assistant_idxs = np.where(
input_ids == tokenizer.convert_tokens_to_ids("assistant")
)[0]
end_header_idxs = np.where(
input_ids == tokenizer.convert_tokens_to_ids("<|end_header_id|>")
)[0]
eot_idxs = np.where(
input_ids == tokenizer.convert_tokens_to_ids("<|eot_id|>"))[0]
context = np.ones_like(input_ids, dtype=np.int8)
for assistant_idx in assistant_idxs:
if assistant_idx in set((start_header_idxs + end_header_idxs) / 2):
st = assistant_idx + 3 # assistant<|end_header_id|>\n\n
for eot_idx in eot_idxs:
if eot_idx > st:
context[st: eot_idx + 1] = 0
break
input_ids = np.hstack(input_ids)
context = np.hstack(context)
return input_ids, context, raw_msg
def conversation_to_ids_qwen2(conversation, tokenizer):
raw_msg = ""
chat = []
context = []
for idx, msg in enumerate(conversation):
role = msg["role"]
message = msg["content"]
assert role in ["user", "assistant"]
if role == "user":
prefix = "user"
else:
prefix = "assistant"
chat.append({"role":prefix, "content":message})
raw_msg += prefix + message
assert set([i['role'] for i in chat]) & set(['assistant'])
ret = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=False)
input_ids = tokenizer.apply_chat_template(chat, tokenize=True, add_generation_prompt=False)
input_ids = np.array(input_ids)
start_idxs = np.where(input_ids == tokenizer.convert_tokens_to_ids('<|im_start|>'))[0]
assistant_idxs = np.where(input_ids == tokenizer.convert_tokens_to_ids('assistant'))[0]
end_idxs = np.where(input_ids == tokenizer.convert_tokens_to_ids('<|im_end|>'))[0]
context = np.ones_like(input_ids, dtype=np.int8)
for assistant_idx in assistant_idxs:
if assistant_idx-1 in set(start_idxs):
st = assistant_idx + 1
for end_idx in end_idxs:
if end_idx > st:
context[st: end_idx + 1] = 0
break
input_ids = np.hstack(input_ids)
context = np.hstack(context)
return input_ids, context, raw_msg
def preprocess(
images_dict,
conversations,
tokenizer,
transform,
query_nums=64,
slice_config=None,
llm_type=None,
patch_size=14,
batch_vision=False,
max_length=2048,
):
"""
single(multi) image(s) preprocess, the image(s) will be placed at the top of the conversation
"""
conversations = copy.deepcopy(conversations)
assert len(conversations) > 1, "conversations length must large than 2"
assert conversations[0]["role"] == "user", "the first role must be user"
if slice_config is not None:
assert isinstance(slice_config, Dict)
assert "patch_size" in slice_config
assert "max_slice_nums" in slice_config
assert "scale_resolution" in slice_config
default_image_placeholder = (
tokenizer.im_start + tokenizer.unk_token * query_nums + tokenizer.im_end
)
new_schema = False
use_image_id = False
if llm_type=='qwen2':
new_schema = True
use_image_id = True
image_placeholder_dict = {}
images = []
image_id_cnt = 0
for img_name, image in images_dict.items():
if slice_config:
source_image, patches, best_grid = slice_image(
image,
slice_config["max_slice_nums"],
slice_config["scale_resolution"],
slice_config["patch_size"],
)
images.append(source_image)
image_placeholder = default_image_placeholder
if len(patches) > 0:
for i in range(len(patches)):
for j in range(len(patches[0])):
images.append(patches[i][j])
if use_image_id:
image_placeholder = f'{tokenizer.im_id_start}{image_id_cnt}{tokenizer.im_id_end}' + image_placeholder
image_id_cnt += 1
image_placeholder += get_grid_placeholder(
tokenizer, best_grid, query_nums, new_schema = new_schema)
image_placeholder_dict[img_name] = image_placeholder
else:
images.append(image)
if use_image_id:
image_placeholder = f'{tokenizer.im_id_start}{image_id_cnt}{tokenizer.im_id_end}' + image_placeholder
image_id_cnt += 1
else:
image_placeholder = default_image_placeholder
image_placeholder_dict[img_name] = image_placeholder
images = [transform(i) for i in images]
if len(images_dict) == 1 and "<image>" in images_dict:
if "<image>" in conversations[0]["content"]:
conversations[0]["content"] = conversations[0]["content"].replace(
"<image>", image_placeholder
)
else:
conversations[0]["content"] = (
image_placeholder + "\n" + conversation[0]["content"]
)
input_dict = conversation_to_ids(conversations, tokenizer, llm_type, new_schema, max_length)
else:
pattern = r'<image_\d+>'
new_conversations = []
for conversation in conversations:
content = conversation['content']
parts = re.split(f'({pattern})', content)
for i, part in enumerate(parts):
if not part.strip():
continue
if re.match(pattern, part):
if part in image_placeholder_dict:
parts[i] = image_placeholder_dict[part]
else:
raise Exception(f"not found {part} in image dict")
conversation['content'] = '\n'.join(parts)
new_conversations.append(conversation)
conversations = new_conversations
input_dict = conversation_to_ids(conversations, tokenizer, llm_type, new_schema, max_length)
if batch_vision:
tgt_sizes = []
reshape_images = []
for image in images:
H, W = image.shape[1:]
reshape_image = reshape_by_patch(image, patch_size)
reshape_images.append(reshape_image)
tgt_sizes.append([H // patch_size, W // patch_size])
if tgt_sizes:
tgt_sizes = torch.Tensor(tgt_sizes).type(torch.int32)
input_dict["pixel_values"] = reshape_images
input_dict["tgt_sizes"] = tgt_sizes
else:
input_dict["pixel_values"] = images
input_dict["tgt_sizes"] = []
return input_dict
def slice_image(
image, max_slice_nums=9, scale_resolution=448, patch_size=14, never_split=False
):
original_size = image.size
original_width, original_height = original_size
log_ratio = math.log(original_width / original_height)
ratio = original_width * original_height / \
(scale_resolution * scale_resolution)
multiple = min(math.ceil(ratio), max_slice_nums)
source_image = None
best_grid = None
patches = []
if multiple <= 1 or never_split:
# dont need to slice, upsample
best_size = find_best_resize(
original_size, scale_resolution, patch_size, allow_upscale=True
)
source_image = image.resize(best_size, Image.Resampling.BICUBIC)
else:
candidate_split_grids_nums = []
for i in [multiple - 1, multiple, multiple + 1]:
if i == 1 or i > max_slice_nums:
continue
candidate_split_grids_nums.append(i)
# source image, down-sampling and ensure divided by patch_size
best_resize = find_best_resize(
original_size, scale_resolution, patch_size)
source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
candidate_grids = []
# find best grid
for split_grids_nums in candidate_split_grids_nums:
m = 1
while m <= split_grids_nums:
if split_grids_nums % m == 0:
candidate_grids.append([m, split_grids_nums // m])
m += 1
best_grid = [1, 1]
min_error = float("inf")
for grid in candidate_grids:
error = abs(log_ratio - math.log(grid[0] / grid[1]))
if error < min_error:
best_grid = grid
min_error = error
refine_size = get_refine_size(
original_size, best_grid, scale_resolution, patch_size, allow_upscale=True
)
refine_image = image.resize(refine_size, Image.Resampling.BICUBIC)
patches = split_to_patches(refine_image, best_grid)
return source_image, patches, best_grid
def ensure_divide(length, patch_size):
return max(round(length / patch_size) * patch_size, patch_size)
def find_best_resize(original_size, scale_resolution, patch_size, allow_upscale=False):
width, height = original_size
if (width * height > scale_resolution * scale_resolution) or allow_upscale:
r = width / height
height = int(scale_resolution / math.sqrt(r))
width = int(height * r)
best_width = ensure_divide(width, patch_size)
best_height = ensure_divide(height, patch_size)
return (best_width, best_height)
def get_refine_size(
original_size, grid, scale_resolution, patch_size, allow_upscale=False
):
width, height = original_size
grid_x, grid_y = grid
refine_width = ensure_divide(width, grid_x)
refine_height = ensure_divide(height, grid_y)
grid_width = refine_width / grid_x
grid_height = refine_height / grid_y
best_grid_size = find_best_resize(
(grid_width, grid_height),
scale_resolution,
patch_size,
allow_upscale=allow_upscale,
)
refine_size = (best_grid_size[0] * grid_x, best_grid_size[1] * grid_y)
return refine_size
def split_to_patches(image, grid):
patches = []
width, height = image.size
grid_x = int(width / grid[0])
grid_y = int(height / grid[1])
for i in range(0, height, grid_y):
images = []
for j in range(0, width, grid_x):
box = (j, i, j + grid_x, i + grid_y)
patch = image.crop(box)
images.append(patch)
patches.append(images)
return patches
def get_grid_placeholder(tokenizer, grid, query_num, new_schema=False):
if new_schema:
image_placeholder = (
tokenizer.slice_start + tokenizer.unk_token * query_num + tokenizer.slice_end
)
else:
image_placeholder = (
tokenizer.im_start + tokenizer.unk_token * query_num + tokenizer.im_end
)
cols = grid[0]
rows = grid[1]
slices = []
for i in range(rows):
lines = []
for j in range(cols):
lines.append(image_placeholder)
slices.append("".join(lines))
if new_schema:
slice_placeholder = '\n'.join(slices)
else:
slice_placeholder = tokenizer.slice_start + \
"\n".join(slices) + tokenizer.slice_end
return slice_placeholder
def reshape_by_patch(image_tensor, patch_size):
"""
:param image_tensor: shape [3, H, W]
:param patch_size:
:return: [3, patch_size, HW/patch_size]
"""
patches = torch.nn.functional.unfold(
image_tensor, (patch_size, patch_size), stride=(patch_size, patch_size)
)
patches = patches.reshape(image_tensor.size(0), patch_size, patch_size, -1)
patches = patches.permute(0, 1, 3, 2).reshape(
image_tensor.size(0), patch_size, -1)
return patches
|