File size: 5,941 Bytes
569f484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import torch
import torch.distributed as dist
from vlmeval.config import supported_VLM
from vlmeval.utils import track_progress_rich
from vlmeval.smp import *

FAIL_MSG = 'Failed to obtain answer via API.'


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('--data', type=str, nargs='+', required=True)
    parser.add_argument('--model', type=str, nargs='+', required=True)
    parser.add_argument('--nproc', type=int, default=4, required=True)
    parser.add_argument('--verbose', action='store_true')
    args = parser.parse_args()
    return args


# Only API model is accepted
def infer_data_api(work_dir, model_name, dataset, nframe=8, pack=False, samples_dict={}, api_nproc=4):
    rank, world_size = get_rank_and_world_size()
    assert rank == 0 and world_size == 1
    dataset_name = dataset.dataset_name
    model = supported_VLM[model_name]() if isinstance(model_name, str) else model_name
    assert getattr(model, 'is_api', False)

    indices = list(samples_dict.keys())
    structs = [dataset.build_prompt(samples_dict[idx], num_frames=nframe,
                                    video_llm=getattr(model, 'VIDEO_LLM', False)) for idx in indices]

    packstr = 'pack' if pack else 'nopack'
    out_file = f'{work_dir}/{model_name}_{dataset_name}_{nframe}frame_{packstr}_supp.pkl'
    res = load(out_file) if osp.exists(out_file) else {}

    structs = [s for i, s in zip(indices, structs) if i not in res]
    indices = [i for i in indices if i not in res]

    gen_func = model.generate
    structs = [dict(message=struct, dataset=dataset_name) for struct in structs]

    if len(structs):
        track_progress_rich(gen_func, structs, nproc=api_nproc, chunksize=api_nproc, save=out_file, keys=indices)

    res = load(out_file)
    return res


def infer_data(model_name, work_dir, dataset, out_file, nframe=8, pack=False, verbose=False, api_nproc=4):
    res = load(out_file) if osp.exists(out_file) else {}
    rank, world_size = get_rank_and_world_size()
    dataset_name = dataset.dataset_name

    sample_indices = list(dataset.videos) if pack else list(dataset.data['index'])
    samples = list(dataset.videos) if pack else list(range(len(dataset.data)))
    sample_map = {i: s for i, s in zip(sample_indices, samples)}

    sample_indices_sub = sample_indices[rank::world_size]
    if np.all([idx in res for idx in sample_indices_sub]):
        return model_name
    sample_indices_subrem = [x for x in sample_indices_sub if x not in res]

    model = supported_VLM[model_name]() if isinstance(model_name, str) else model_name

    is_api = getattr(model, 'is_api', False)
    if is_api:
        assert world_size == 1
        supp = infer_data_api(
            work_dir=work_dir,
            model_name=model_name,
            dataset=dataset,
            nframe=nframe,
            pack=pack,
            samples_dict={k: sample_map[k] for k in sample_indices_subrem},
            api_nproc=api_nproc)
        for k in sample_indices_subrem:
            assert k in supp
        res.update(supp)
        dump(res, out_file)
        return model_name

    for i, idx in tqdm(enumerate(sample_indices_subrem)):
        if idx in res:
            continue
        # adapt to model frame sample number first
        nframe = getattr(model, 'nframe', 0) if getattr(model, 'nframe', 0) > 0 else nframe
        # when using video-llm, build prompt returns video+question; otherwise, several frames+question
        struct = dataset.build_prompt(sample_map[idx], num_frames=nframe, video_llm=getattr(model, 'VIDEO_LLM', False))
        response = model.generate(message=struct, dataset=dataset_name)
        torch.cuda.empty_cache()

        if verbose:
            print(response, flush=True)

        res[idx] = response
        if (i + 1) % 20 == 0:
            dump(res, out_file)

    res = {k: res[k] for k in sample_indices_sub}
    dump(res, out_file)
    return model


# A wrapper for infer_data, do the pre & post processing
def infer_data_job_video(
        model,
        work_dir,
        model_name,
        dataset,
        nframe=8,
        pack=False,
        verbose=False,
        subtitle=False,
        api_nproc=4):

    dataset_name = dataset.dataset_name
    packstr = 'pack' if pack else 'nopack'
    rank, world_size = get_rank_and_world_size()
    result_file = osp.join(work_dir, f'{model_name}_{dataset_name}_{nframe}frame_{packstr}.xlsx')
    if dataset_name == 'Video-MME':
        subtitle_str = 'subs' if subtitle else 'nosubs'
        result_file = result_file.replace('.xlsx', f'_{subtitle_str}.xlsx')

    # Dump Predictions to Prev File if result file exists
    if osp.exists(result_file):
        return model_name

    tmpl = osp.join(work_dir, '{}' + f'{world_size}_{dataset_name}_{nframe}frame_{packstr}.pkl')
    if dataset_name == 'Video-MME':
        subtitle_str = 'subs' if subtitle else 'nosubs'
        tmpl = tmpl.replace('.pkl', f'_{subtitle_str}.pkl')
    out_file = tmpl.format(rank)

    model = infer_data(
        model,
        work_dir=work_dir,
        dataset=dataset,
        nframe=nframe,
        pack=pack,
        out_file=out_file,
        verbose=verbose,
        api_nproc=api_nproc)

    if world_size > 1:
        dist.barrier()

    if rank == 0:
        data_all = {}
        for i in range(world_size):
            data_all.update(load(tmpl.format(i)))

        meta = dataset.data
        if dataset_name == 'MMBench-Video' and pack:
            meta, vstats = dataset.load_pack_answers(data_all)
            print(f'Statitics of Pack Video Inference: {vstats}')
        else:
            for x in meta['index']:
                assert x in data_all
            meta['prediction'] = [str(data_all[x]) for x in meta['index']]
            if 'image' in meta:
                meta.pop('image')

        dump(meta, result_file)
        for i in range(world_size):
            os.remove(tmpl.format(i))
    return model