File size: 9,654 Bytes
569f484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
from ..smp import *
import os
import sys
from .base import BaseAPI

APIBASES = {
    'OFFICIAL': 'https://api.openai.com/v1/chat/completions',
}


def GPT_context_window(model):
    length_map = {
        'gpt-4': 8192,
        'gpt-4-0613': 8192,
        'gpt-4-turbo-preview': 128000,
        'gpt-4-1106-preview': 128000,
        'gpt-4-0125-preview': 128000,
        'gpt-4-vision-preview': 128000,
        'gpt-4-turbo': 128000,
        'gpt-4-turbo-2024-04-09': 128000,
        'gpt-3.5-turbo': 16385,
        'gpt-3.5-turbo-0125': 16385,
        'gpt-3.5-turbo-1106': 16385,
        'gpt-3.5-turbo-instruct': 4096,
    }
    if model in length_map:
        return length_map[model]
    else:
        return 128000


class OpenAIWrapper(BaseAPI):

    is_api: bool = True

    def __init__(self,
                 model: str = 'gpt-3.5-turbo-0613',
                 retry: int = 5,
                 wait: int = 5,
                 key: str = None,
                 verbose: bool = True,
                 system_prompt: str = None,
                 temperature: float = 0,
                 timeout: int = 60,
                 api_base: str = None,
                 max_tokens: int = 1024,
                 img_size: int = 512,
                 img_detail: str = 'low',
                 use_azure: bool = False,
                 **kwargs):

        self.model = model
        self.cur_idx = 0
        self.fail_msg = 'Failed to obtain answer via API. '
        self.max_tokens = max_tokens
        self.temperature = temperature
        self.use_azure = use_azure

        if 'step-1v' in model:
            env_key = os.environ.get('STEPAI_API_KEY', '')
            if key is None:
                key = env_key
        elif 'yi-vision' in model:
            env_key = os.environ.get('YI_API_KEY', '')
            if key is None:
                key = env_key
        else:
            if use_azure:
                env_key = os.environ.get('AZURE_OPENAI_API_KEY', None)
                assert env_key is not None, 'Please set the environment variable AZURE_OPENAI_API_KEY. '

                if key is None:
                    key = env_key
                assert isinstance(key, str), (
                    'Please set the environment variable AZURE_OPENAI_API_KEY to your openai key. '
                )
            else:
                env_key = os.environ.get('OPENAI_API_KEY', '')
                if key is None:
                    key = env_key
                assert isinstance(key, str) and key.startswith('sk-'), (
                    f'Illegal openai_key {key}. '
                    'Please set the environment variable OPENAI_API_KEY to your openai key. '
                )

        self.key = key
        assert img_size > 0 or img_size == -1
        self.img_size = img_size
        assert img_detail in ['high', 'low']
        self.img_detail = img_detail
        self.timeout = timeout

        super().__init__(wait=wait, retry=retry, system_prompt=system_prompt, verbose=verbose, **kwargs)

        if use_azure:
            api_base_template = (
                '{endpoint}openai/deployments/{deployment_name}/chat/completions?api-version={api_version}'
            )
            endpoint = os.getenv('AZURE_OPENAI_ENDPOINT', None)
            assert endpoint is not None, 'Please set the environment variable AZURE_OPENAI_ENDPOINT. '
            deployment_name = os.getenv('AZURE_OPENAI_DEPLOYMENT_NAME', None)
            assert deployment_name is not None, 'Please set the environment variable AZURE_OPENAI_DEPLOYMENT_NAME. '
            api_version = os.getenv('OPENAI_API_VERSION', None)
            assert api_version is not None, 'Please set the environment variable OPENAI_API_VERSION. '

            self.api_base = api_base_template.format(
                endpoint=os.getenv('AZURE_OPENAI_ENDPOINT'),
                deployment_name=os.getenv('AZURE_OPENAI_DEPLOYMENT_NAME'),
                api_version=os.getenv('OPENAI_API_VERSION')
            )
        else:
            if api_base is None:
                if 'OPENAI_API_BASE' in os.environ and os.environ['OPENAI_API_BASE'] != '':
                    self.logger.info('Environment variable OPENAI_API_BASE is set. Will use it as api_base. ')
                    api_base = os.environ['OPENAI_API_BASE']
                else:
                    api_base = 'OFFICIAL'

            assert api_base is not None

            if api_base in APIBASES:
                self.api_base = APIBASES[api_base]
            elif api_base.startswith('http'):
                self.api_base = api_base
            else:
                self.logger.error('Unknown API Base. ')
                sys.exit(-1)

        self.logger.info(f'Using API Base: {self.api_base}; API Key: {self.key}')

    # inputs can be a lvl-2 nested list: [content1, content2, content3, ...]
    # content can be a string or a list of image & text
    def prepare_itlist(self, inputs):
        assert np.all([isinstance(x, dict) for x in inputs])
        has_images = np.sum([x['type'] == 'image' for x in inputs])
        if has_images:
            content_list = []
            for msg in inputs:
                if msg['type'] == 'text':
                    content_list.append(dict(type='text', text=msg['value']))
                elif msg['type'] == 'image':
                    from PIL import Image
                    img = Image.open(msg['value'])
                    b64 = encode_image_to_base64(img, target_size=self.img_size)
                    img_struct = dict(url=f'data:image/jpeg;base64,{b64}', detail=self.img_detail)
                    content_list.append(dict(type='image_url', image_url=img_struct))
        else:
            assert all([x['type'] == 'text' for x in inputs])
            text = '\n'.join([x['value'] for x in inputs])
            content_list = [dict(type='text', text=text)]
        return content_list

    def prepare_inputs(self, inputs):
        input_msgs = []
        if self.system_prompt is not None:
            input_msgs.append(dict(role='system', content=self.system_prompt))
        assert isinstance(inputs, list) and isinstance(inputs[0], dict)
        assert np.all(['type' in x for x in inputs]) or np.all(['role' in x for x in inputs]), inputs
        if 'role' in inputs[0]:
            assert inputs[-1]['role'] == 'user', inputs[-1]
            for item in inputs:
                input_msgs.append(dict(role=item['role'], content=self.prepare_itlist(item['content'])))
        else:
            input_msgs.append(dict(role='user', content=self.prepare_itlist(inputs)))
        return input_msgs

    def generate_inner(self, inputs, **kwargs) -> str:
        input_msgs = self.prepare_inputs(inputs)
        temperature = kwargs.pop('temperature', self.temperature)
        max_tokens = kwargs.pop('max_tokens', self.max_tokens)

        context_window = GPT_context_window(self.model)
        max_tokens = min(max_tokens, context_window - self.get_token_len(inputs))
        if 0 < max_tokens <= 100:
            self.logger.warning(
                'Less than 100 tokens left, '
                'may exceed the context window with some additional meta symbols. '
            )
        if max_tokens <= 0:
            return 0, self.fail_msg + 'Input string longer than context window. ', 'Length Exceeded. '

        # Will send request if use Azure, dk how to use openai client for it
        if self.use_azure:
            headers = {'Content-Type': 'application/json', 'api-key': self.key}
        else:
            headers = {'Content-Type': 'application/json', 'Authorization': f'Bearer {self.key}'}
        payload = dict(
            model=self.model,
            messages=input_msgs,
            max_tokens=max_tokens,
            n=1,
            temperature=temperature,
            **kwargs)
        response = requests.post(
            self.api_base,
            headers=headers, data=json.dumps(payload), timeout=self.timeout * 1.1)
        ret_code = response.status_code
        ret_code = 0 if (200 <= int(ret_code) < 300) else ret_code
        answer = self.fail_msg
        try:
            resp_struct = json.loads(response.text)
            answer = resp_struct['choices'][0]['message']['content'].strip()
        except:
            pass
        return ret_code, answer, response

    def get_image_token_len(self, img_path, detail='low'):
        import math
        if detail == 'low':
            return 85

        im = Image.open(img_path)
        height, width = im.size
        if width > 1024 or height > 1024:
            if width > height:
                height = int(height * 1024 / width)
                width = 1024
            else:
                width = int(width * 1024 / height)
                height = 1024

        h = math.ceil(height / 512)
        w = math.ceil(width / 512)
        total = 85 + 170 * h * w
        return total

    def get_token_len(self, inputs) -> int:
        import tiktoken
        try:
            enc = tiktoken.encoding_for_model(self.model)
        except:
            enc = tiktoken.encoding_for_model('gpt-4')
        assert isinstance(inputs, list)
        tot = 0
        for item in inputs:
            if 'role' in item:
                tot += self.get_token_len(item['content'])
            elif item['type'] == 'text':
                tot += len(enc.encode(item['value']))
            elif item['type'] == 'image':
                tot += self.get_image_token_len(item['value'], detail=self.img_detail)
        return tot


class GPT4V(OpenAIWrapper):

    def generate(self, message, dataset=None):
        return super(GPT4V, self).generate(message)