Spaces:
Running
Running
File size: 17,999 Bytes
a54024a 27a1559 a54024a 27a1559 a54024a 27a1559 a54024a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
import unittest
import numpy as np
import torch
from sentence_transformers import SentenceTransformer
from .encoder_models import SBertEncoder, get_encoder, get_sbert_encoder
from .semncg import (
RankedGains,
compute_cosine_similarity,
compute_gain,
score_ncg,
compute_ncg,
_validate_input_format,
SemNCG
)
from .utils import (
get_gpu,
slice_embeddings,
is_nested_list_of_type,
flatten_list,
prep_sentences,
tokenize_and_prep_document
)
class TestUtils(unittest.TestCase):
def test_get_gpu(self):
gpu_count = torch.cuda.device_count()
gpu_available = torch.cuda.is_available()
# Test single boolean input
self.assertEqual(get_gpu(True), 0 if gpu_available else "cpu")
self.assertEqual(get_gpu(False), "cpu")
# Test single string input
self.assertEqual(get_gpu("cpu"), "cpu")
self.assertEqual(get_gpu("gpu"), 0 if gpu_available else "cpu")
self.assertEqual(get_gpu("cuda"), 0 if gpu_available else "cpu")
# Test single integer input
self.assertEqual(get_gpu(0), 0 if gpu_available else "cpu")
self.assertEqual(get_gpu(1), 1 if gpu_available else "cpu")
# Test list input with unique elements
self.assertEqual(get_gpu([True, "cpu", 0]), [0, "cpu"] if gpu_available else ["cpu", "cpu", "cpu"])
# Test list input with duplicate elements
self.assertEqual(get_gpu([0, 0, "gpu"]), 0 if gpu_available else ["cpu", "cpu", "cpu"])
# Test list input with duplicate elements of different types
self.assertEqual(get_gpu([True, 0, "gpu"]), 0 if gpu_available else ["cpu", "cpu", "cpu"])
# Test list input but only one element
self.assertEqual(get_gpu([True]), 0 if gpu_available else "cpu")
# Test list input with all integers
self.assertEqual(get_gpu(list(range(gpu_count))),
list(range(gpu_count)) if gpu_available else gpu_count * ["cpu"])
with self.assertRaises(ValueError):
get_gpu("invalid")
with self.assertRaises(ValueError):
get_gpu(torch.cuda.device_count())
def test_prep_sentences(self):
# Test normal case
self.assertEqual(prep_sentences(["Hello, world!", " This is a test. ", "!!!"]),
['Hello, world!', 'This is a test.'])
# Test case with only punctuations
with self.assertRaises(ValueError):
prep_sentences(["!!!", "..."])
# Test case with empty list
with self.assertRaises(ValueError):
prep_sentences([])
def test_tokenize_and_prep_document(self):
# Test tokenize=True with string input
self.assertEqual(tokenize_and_prep_document("Hello, world! This is a test.", True),
['Hello, world!', 'This is a test.'])
# Test tokenize=False with list of strings input
self.assertEqual(tokenize_and_prep_document(["Hello, world!", "This is a test."], False),
['Hello, world!', 'This is a test.'])
# Test tokenize=True with empty document
with self.assertRaises(ValueError):
tokenize_and_prep_document("!!! ...", True)
def test_slice_embeddings(self):
# Case 1
embeddings = np.random.rand(10, 5)
num_sentences = [3, 2, 5]
expected_output = [embeddings[:3], embeddings[3:5], embeddings[5:]]
self.assertTrue(
all(np.array_equal(a, b) for a, b in zip(slice_embeddings(embeddings, num_sentences),
expected_output))
)
# Case 2
num_sentences_nested = [[2, 1], [3, 4]]
expected_output_nested = [[embeddings[:2], embeddings[2:3]], [embeddings[3:6], embeddings[6:]]]
self.assertTrue(
slice_embeddings(embeddings, num_sentences_nested), expected_output_nested
)
# Case 3
document_sentences_count = [10, 8, 7]
reference_sentences_count = [5, 3, 2]
pred_sentences_count = [2, 2, 1]
all_embeddings = np.random.rand(
sum(document_sentences_count + reference_sentences_count + pred_sentences_count), 5,
)
embeddings = all_embeddings
expected_doc_embeddings = [embeddings[:10], embeddings[10:18], embeddings[18:25]]
embeddings = all_embeddings[25:]
expected_ref_embeddings = [embeddings[:5], embeddings[5:8], embeddings[8:10]]
embeddings = all_embeddings[35:]
expected_pred_embeddings = [embeddings[:2], embeddings[2:4], embeddings[4:5]]
doc_embeddings = slice_embeddings(all_embeddings, document_sentences_count)
ref_embeddings = slice_embeddings(all_embeddings[sum(document_sentences_count):], reference_sentences_count)
pred_embeddings = slice_embeddings(
all_embeddings[sum(document_sentences_count + reference_sentences_count):], pred_sentences_count
)
self.assertTrue(doc_embeddings, expected_doc_embeddings)
self.assertTrue(ref_embeddings, expected_ref_embeddings)
self.assertTrue(pred_embeddings, expected_pred_embeddings)
with self.assertRaises(TypeError):
slice_embeddings(embeddings, "invalid")
def test_is_nested_list_of_type(self):
# Test case: Depth 0, single element matching element_type
self.assertTrue(is_nested_list_of_type("test", str, 0))
# Test case: Depth 0, single element not matching element_type
self.assertFalse(is_nested_list_of_type("test", int, 0))
# Test case: Depth 1, list of elements matching element_type
self.assertTrue(is_nested_list_of_type(["apple", "banana"], str, 1))
# Test case: Depth 1, list of elements not matching element_type
self.assertFalse(is_nested_list_of_type([1, 2, 3], str, 1))
# Test case: Depth 0 (Wrong), list of elements matching element_type
self.assertFalse(is_nested_list_of_type([1, 2, 3], str, 0))
# Depth 2
self.assertTrue(is_nested_list_of_type([[1, 2], [3, 4]], int, 2))
self.assertTrue(is_nested_list_of_type([['1', '2'], ['3', '4']], str, 2))
self.assertFalse(is_nested_list_of_type([[1, 2], ["a", "b"]], int, 2))
# Depth 3
self.assertFalse(is_nested_list_of_type([[[1], [2]], [[3], [4]]], list, 3))
self.assertTrue(is_nested_list_of_type([[[1], [2]], [[3], [4]]], int, 3))
with self.assertRaises(ValueError):
is_nested_list_of_type([1, 2], int, -1)
def test_flatten_list(self):
self.assertEqual(flatten_list([1, [2, 3], [[4], 5]]), [1, 2, 3, 4, 5])
self.assertEqual(flatten_list([]), [])
self.assertEqual(flatten_list([1, 2, 3]), [1, 2, 3])
self.assertEqual(flatten_list([[[[1]]]]), [1])
class TestSBertEncoder(unittest.TestCase):
def setUp(self) -> None:
# Set up a test SentenceTransformer model
self.model_name = "paraphrase-distilroberta-base-v1"
self.sbert_model = get_sbert_encoder(self.model_name)
self.device = "cpu" # For testing on CPU
self.batch_size = 32
self.verbose = False
self.encoder = SBertEncoder(self.sbert_model, self.device, self.batch_size, self.verbose)
def test_encode_single_sentence(self):
sentence = "Hello, world!"
embeddings = self.encoder.encode([sentence])
self.assertEqual(embeddings.shape, (1, 768)) # Adjust shape based on your model's embedding dimension
def test_encode_multiple_sentences(self):
sentences = ["Hello, world!", "This is a test."]
embeddings = self.encoder.encode(sentences)
self.assertEqual(embeddings.shape, (2, 768)) # Adjust shape based on your model's embedding dimension
def test_get_sbert_encoder(self):
model_name = "paraphrase-distilroberta-base-v1"
sbert_model = get_sbert_encoder(model_name)
self.assertIsInstance(sbert_model, SentenceTransformer)
def test_encode_with_gpu(self):
if torch.cuda.is_available():
device = "cuda"
encoder = get_encoder(self.sbert_model, device, self.batch_size, self.verbose)
sentences = ["Hello, world!", "This is a test."]
embeddings = encoder.encode(sentences)
self.assertEqual(embeddings.shape, (2, 768)) # Adjust shape based on your model's embedding dimension
else:
self.skipTest("CUDA not available, skipping GPU test.")
def test_encode_multi_device(self):
if torch.cuda.device_count() < 2:
self.skipTest("Multi-GPU test requires at least 2 GPUs.")
else:
devices = ["cuda:0", "cuda:1"]
encoder = get_encoder(self.sbert_model, devices, self.batch_size, self.verbose)
sentences = ["This is a test sentence.", "Here is another sentence.", "This is a test sentence."]
embeddings = encoder.encode(sentences)
self.assertIsInstance(embeddings, np.ndarray)
self.assertEqual(embeddings.shape[0], 3)
self.assertEqual(embeddings.shape[1], self.encoder.model.get_sentence_embedding_dimension())
class TestGetEncoder(unittest.TestCase):
def setUp(self):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.batch_size = 8
self.verbose = False
def _base_test(self, model_name):
sbert_model = get_sbert_encoder(model_name)
encoder = get_encoder(sbert_model, self.device, self.batch_size, self.verbose)
# Assert
self.assertIsInstance(encoder, SBertEncoder)
self.assertEqual(encoder.device, self.device)
self.assertEqual(encoder.batch_size, self.batch_size)
self.assertEqual(encoder.verbose, self.verbose)
def test_get_sbert_encoder(self):
model_name = "stsb-roberta-large"
self._base_test(model_name)
def test_sbert_model(self):
model_name = "all-mpnet-base-v2"
self._base_test(model_name)
def test_huggingface_model(self):
"""Test Huggingface models which work with SBert library"""
model_name = "roberta-base"
self._base_test(model_name)
def test_get_encoder_environment_error(self): # This parameter is used when using patch decorator
model_name = "abc" # Wrong model_name
with self.assertRaises(EnvironmentError):
get_sbert_encoder(model_name)
def test_get_encoder_other_exception(self):
model_name = "apple/OpenELM-270M" # This model is not supported by SentenceTransformer lib
with self.assertRaises(RuntimeError):
get_sbert_encoder(model_name)
class TestRankedGainsDataclass(unittest.TestCase):
def test_ranked_gains_dataclass(self):
# Test initialization and attribute access
gt_gains = [("doc1", 0.8), ("doc2", 0.6)]
pred_gains = [("doc2", 0.7), ("doc1", 0.5)]
k = 2
ncg = 0.75
ranked_gains = RankedGains(gt_gains, pred_gains, k, ncg)
self.assertEqual(ranked_gains.gt_gains, gt_gains)
self.assertEqual(ranked_gains.pred_gains, pred_gains)
self.assertEqual(ranked_gains.k, k)
self.assertEqual(ranked_gains.ncg, ncg)
class TestComputeCosineSimilarity(unittest.TestCase):
def test_compute_cosine_similarity(self):
doc_embeds = np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]])
ref_embeds = np.array([[0.2, 0.3, 0.4], [0.5, 0.6, 0.7]])
# Test compute_cosine_similarity function
similarity_scores = compute_cosine_similarity(doc_embeds, ref_embeds)
print(similarity_scores)
# Example values, change as per actual function output
expected_scores = [0.980, 0.997]
self.assertAlmostEqual(similarity_scores[0], expected_scores[0], places=3)
self.assertAlmostEqual(similarity_scores[1], expected_scores[1], places=3)
class TestComputeGain(unittest.TestCase):
def test_compute_gain(self):
# Test compute_gain function
sim_scores = [0.8, 0.6, 0.7]
gains = compute_gain(sim_scores)
print(gains)
# Example values, change as per actual function output
expected_gains = [(0, 0.5), (2, 0.3333333333333333), (1, 0.16666666666666666)]
self.assertEqual(gains, expected_gains)
class TestScoreNcg(unittest.TestCase):
def test_score_ncg(self):
# Test score_ncg function
model_relevance = [0.8, 0.7, 0.6]
gt_relevance = [1.0, 0.9, 0.8]
ncg_score = score_ncg(model_relevance, gt_relevance)
expected_ncg = 0.778 # Example value, change as per actual function output
self.assertAlmostEqual(ncg_score, expected_ncg, places=3)
class TestComputeNcg(unittest.TestCase):
def test_compute_ncg(self):
# Test compute_ncg function
pred_gains = [(0, 0.8), (2, 0.7), (1, 0.6)]
gt_gains = [(0, 1.0), (1, 0.9), (2, 0.8)]
k = 3
ncg_score = compute_ncg(pred_gains, gt_gains, k)
expected_ncg = 1.0 # TODO: Confirm this with Dr. Santu
self.assertAlmostEqual(ncg_score, expected_ncg, places=6)
class TestValidateInputFormat(unittest.TestCase):
def test_validate_input_format(self):
# Test _validate_input_format function
tokenize_sentences = True
predictions = ["Prediction 1", "Prediction 2"]
references = ["Reference 1", "Reference 2"]
documents = ["Document 1", "Document 2"]
# No exception should be raised for valid input
try:
_validate_input_format(tokenize_sentences, predictions, references, documents)
except ValueError as e:
self.fail(f"_validate_input_format raised ValueError unexpectedly: {str(e)}")
# Test invalid input format
predictions_invalid = [["Sentence 1 in prediction 1.", "Sentence 2 in prediction 1."],
["Sentence 1 in prediction 2.", "Sentence 2 in prediction 2."]]
references_invalid = [["Sentences in reference 1."], ["Sentences in reference 2."]]
documents_invalid = [["Sentence 1 in document 1.", "Sentence 2 in document 1."],
["Sentence 1 in document 2.", "Sentence 2 in document 2."]]
with self.assertRaises(ValueError):
_validate_input_format(tokenize_sentences, predictions_invalid, references, documents)
with self.assertRaises(ValueError):
_validate_input_format(tokenize_sentences, predictions, references_invalid, documents)
with self.assertRaises(ValueError):
_validate_input_format(tokenize_sentences, predictions, references, documents_invalid)
class TestSemnCG(unittest.TestCase):
def setUp(self):
self.model_name = "stsb-distilbert-base"
self.metric = SemNCG(self.model_name)
def _basic_assertion(self, result, debug: bool = False):
self.assertIsInstance(result, tuple)
self.assertEqual(len(result), 2)
self.assertIsInstance(result[0], float)
self.assertTrue(0.0 <= result[0] <= 1.0)
self.assertIsInstance(result[1], list)
if debug:
for ranked_gain in result[1]:
self.assertTrue(isinstance(ranked_gain, RankedGains))
self.assertTrue(0.0 <= ranked_gain.ncg <= 1.0)
else:
for gain in result[1]:
self.assertTrue(isinstance(gain, float))
self.assertTrue(0.0 <= gain <= 1.0)
def test_compute_basic(self):
predictions = ["The cat sat on the mat.", "The quick brown fox jumps over the lazy dog."]
references = ["A cat was sitting on a mat.", "A quick brown fox jumped over a lazy dog."]
documents = ["There was a cat on a mat.", "The quick brown fox jumped over the lazy dog."]
result = self.metric.compute(predictions=predictions, references=references, documents=documents)
self._basic_assertion(result)
def test_compute_with_tokenization(self):
predictions = [["The cat sat on the mat."], ["The quick brown fox jumps over the lazy dog."]]
references = [["A cat was sitting on a mat."], ["A quick brown fox jumped over a lazy dog."]]
documents = [["There was a cat on a mat."], ["The quick brown fox jumped over the lazy dog."]]
result = self.metric.compute(
predictions=predictions, references=references, documents=documents, tokenize_sentences=False
)
self._basic_assertion(result)
def test_compute_with_pre_compute_embeddings(self):
predictions = ["The cat sat on the mat.", "The quick brown fox jumps over the lazy dog."]
references = ["A cat was sitting on a mat.", "A quick brown fox jumped over a lazy dog."]
documents = ["There was a cat on a mat.", "The quick brown fox jumped over the lazy dog."]
result = self.metric.compute(
predictions=predictions, references=references, documents=documents, pre_compute_embeddings=True
)
self._basic_assertion(result)
def test_compute_with_debug(self):
predictions = ["The cat sat on the mat.", "The quick brown fox jumps over the lazy dog."]
references = ["A cat was sitting on a mat.", "A quick brown fox jumped over a lazy dog."]
documents = ["There was a cat on a mat.", "The quick brown fox jumped over the lazy dog."]
result = self.metric.compute(
predictions=predictions, references=references, documents=documents, debug=True
)
self._basic_assertion(result, debug=True)
def test_compute_invalid_input_format(self):
predictions = "The cat sat on the mat."
references = ["A cat was sitting on a mat."]
documents = ["There was a cat on a mat."]
with self.assertRaises(ValueError):
self.metric.compute(predictions=predictions, references=references, documents=documents)
if __name__ == '__main__':
unittest.main(verbosity=2)
|