Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,725 Bytes
f1ea451 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import os
import librosa
from PIL import Image
from torchvision import transforms
import python_speech_features
import random
import os
import numpy as np
from tqdm import tqdm
import torchvision
import torchvision.transforms as transforms
from PIL import Image
class LatentDataLoader(object):
def __init__(
self,
window_size,
frame_jpgs,
lmd_feats_prefix,
audio_prefix,
raw_audio_prefix,
motion_latents_prefix,
pose_prefix,
db_name,
video_fps=25,
audio_hz=50,
size=256,
mfcc_mode=False,
):
self.window_size = window_size
self.lmd_feats_prefix = lmd_feats_prefix
self.audio_prefix = audio_prefix
self.pose_prefix = pose_prefix
self.video_fps = video_fps
self.audio_hz = audio_hz
self.db_name = db_name
self.raw_audio_prefix = raw_audio_prefix
self.mfcc_mode = mfcc_mode
self.transform = torchvision.transforms.Compose([
transforms.Resize((size, size)),
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))]
)
self.data = []
for db_name in [ 'VoxCeleb2', 'HDTF' ]:
db_png_path = os.path.join(frame_jpgs, db_name)
for clip_name in tqdm(os.listdir(db_png_path)):
item_dict = dict()
item_dict['clip_name'] = clip_name
item_dict['frame_count'] = len(list(os.listdir(os.path.join(frame_jpgs, db_name, clip_name))))
item_dict['hubert_path'] = os.path.join(audio_prefix, db_name, clip_name +".npy")
item_dict['wav_path'] = os.path.join(raw_audio_prefix, db_name, clip_name +".wav")
item_dict['yaw_pitch_roll_path'] = os.path.join(pose_prefix, db_name, 'raw_videos_pose_yaw_pitch_roll', clip_name +".npy")
if not os.path.exists(item_dict['yaw_pitch_roll_path']):
print(f"{db_name}'s {clip_name} miss yaw_pitch_roll_path")
continue
item_dict['yaw_pitch_roll'] = np.load(item_dict['yaw_pitch_roll_path'])
item_dict['yaw_pitch_roll'] = np.clip(item_dict['yaw_pitch_roll'], -90, 90) / 90.0
if not os.path.exists(item_dict['wav_path']):
print(f"{db_name}'s {clip_name} miss wav_path")
continue
if not os.path.exists(item_dict['hubert_path']):
print(f"{db_name}'s {clip_name} miss hubert_path")
continue
if self.mfcc_mode:
wav, sr = librosa.load(item_dict['wav_path'], sr=16000)
input_values = python_speech_features.mfcc(signal=wav,samplerate=sr,numcep=13,winlen=0.025,winstep=0.01)
d_mfcc_feat = python_speech_features.base.delta(input_values, 1)
d_mfcc_feat2 = python_speech_features.base.delta(input_values, 2)
input_values = np.hstack((input_values, d_mfcc_feat, d_mfcc_feat2))
item_dict['hubert_obj'] = input_values
else:
item_dict['hubert_obj'] = np.load(item_dict['hubert_path'], mmap_mode='r')
item_dict['lmd_path'] = os.path.join(lmd_feats_prefix, db_name, clip_name +".txt")
item_dict['lmd_obj_full'] = self.read_landmark_info(item_dict['lmd_path'], upper_face=False)
motion_start_path = os.path.join(motion_latents_prefix, db_name, 'motions', clip_name +".npy")
motion_direction_path = os.path.join(motion_latents_prefix, db_name, 'directions', clip_name +".npy")
if not os.path.exists(motion_start_path):
print(f"{db_name}'s {clip_name} miss motion_start_path")
continue
if not os.path.exists(motion_direction_path):
print(f"{db_name}'s {clip_name} miss motion_direction_path")
continue
item_dict['motion_start_obj'] = np.load(motion_start_path)
item_dict['motion_direction_obj'] = np.load(motion_direction_path)
if self.mfcc_mode:
min_len = min(
item_dict['lmd_obj_full'].shape[0],
item_dict['yaw_pitch_roll'].shape[0],
item_dict['motion_start_obj'].shape[0],
item_dict['motion_direction_obj'].shape[0],
int(item_dict['hubert_obj'].shape[0]/4),
item_dict['frame_count']
)
item_dict['frame_count'] = min_len
item_dict['hubert_obj'] = item_dict['hubert_obj'][:min_len*4,:]
else:
min_len = min(
item_dict['lmd_obj_full'].shape[0],
item_dict['yaw_pitch_roll'].shape[0],
item_dict['motion_start_obj'].shape[0],
item_dict['motion_direction_obj'].shape[0],
int(item_dict['hubert_obj'].shape[1]/2),
item_dict['frame_count']
)
item_dict['frame_count'] = min_len
item_dict['hubert_obj'] = item_dict['hubert_obj'][:, :min_len*2, :]
if min_len < self.window_size * self.video_fps + 5:
continue
print('Db count:', len(self.data))
def get_single_image(self, image_path):
img_source = Image.open(image_path).convert('RGB')
img_source = self.transform(img_source)
return img_source
def get_multiple_ranges(self, lists, multi_ranges):
# Ensure that multi_ranges is a list of tuples
if not all(isinstance(item, tuple) and len(item) == 2 for item in multi_ranges):
raise ValueError("multi_ranges must be a list of (start, end) tuples with exactly two elements each")
extracted_elements = [lists[start:end] for start, end in multi_ranges]
flat_list = [item for sublist in extracted_elements for item in sublist]
return flat_list
def read_landmark_info(self, lmd_path, upper_face=True):
with open(lmd_path, 'r') as file:
lmd_lines = file.readlines()
lmd_lines.sort()
total_lmd_obj = []
for i, line in enumerate(lmd_lines):
# Split the coordinates and filter out any empty strings
coords = [c for c in line.strip().split(' ') if c]
coords = coords[1:] # do not include the file name in the first row
lmd_obj = []
if upper_face:
# Ensure that the coordinates are parsed as integers
for coord_pair in self.get_multiple_ranges(coords, [(0, 3), (14, 27), (36, 48)]): # 28个
x, y = coord_pair.split('_')
lmd_obj.append((int(x)/512, int(y)/512))
else:
for coord_pair in coords:
x, y = coord_pair.split('_')
lmd_obj.append((int(x)/512, int(y)/512))
total_lmd_obj.append(lmd_obj)
return np.array(total_lmd_obj, dtype=np.float32)
def calculate_face_height(self, landmarks):
forehead_center = (landmarks[ :, 21, :] + landmarks[:, 22, :]) / 2
chin_bottom = landmarks[:, 8, :]
distances = np.linalg.norm(forehead_center - chin_bottom, axis=1, keepdims=True)
return distances
def __getitem__(self, index):
data_item = self.data[index]
hubert_obj = data_item['hubert_obj']
frame_count = data_item['frame_count']
lmd_obj_full = data_item['lmd_obj_full']
yaw_pitch_roll = data_item['yaw_pitch_roll']
motion_start_obj = data_item['motion_start_obj']
motion_direction_obj = data_item['motion_direction_obj']
frame_end_index = random.randint(self.window_size * self.video_fps + 1, frame_count - 1)
frame_start_index = frame_end_index - self.window_size * self.video_fps
frame_hint_index = frame_start_index - 1
audio_start_index = int(frame_start_index * (self.audio_hz / self.video_fps))
audio_end_index = int(frame_end_index * (self.audio_hz / self.video_fps))
if self.mfcc_mode:
audio_feats = hubert_obj[audio_start_index:audio_end_index, :]
else:
audio_feats = hubert_obj[:, audio_start_index:audio_end_index, :]
lmd_obj_full = lmd_obj_full[frame_hint_index:frame_end_index, :]
yaw_pitch_roll = yaw_pitch_roll[frame_start_index:frame_end_index, :]
motion_start = motion_start_obj[frame_hint_index]
motion_direction_start = motion_direction_obj[frame_hint_index]
motion_direction = motion_direction_obj[frame_start_index:frame_end_index, :]
return {
'motion_start': motion_start,
'motion_direction': motion_direction,
'audio_feats': audio_feats,
'face_location': lmd_obj_full[1:, 30, 0], # '1:' means taking the first frame as the driven frame. '30' is the noise location, '0' means x coordinate
'face_scale': self.calculate_face_height(lmd_obj_full[1:,:,:]),
'yaw_pitch_roll': yaw_pitch_roll,
'motion_direction_start': motion_direction_start,
}
def __len__(self):
return len(self.data)
|