File size: 9,613 Bytes
ffead1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
import unittest

import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer

from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNet2DConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu, skip_mps

from ...pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ...test_pipelines_common import PipelineTesterMixin


torch.backends.cuda.matmul.allow_tf32 = False


class CycleDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = CycleDiffusionPipeline
    params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
        "negative_prompt",
        "height",
        "width",
        "negative_prompt_embeds",
    }
    required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}
    batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"})

    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            num_train_timesteps=1000,
            clip_sample=False,
            set_alpha_to_one=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "An astronaut riding an elephant",
            "source_prompt": "An astronaut riding a horse",
            "image": image,
            "generator": generator,
            "num_inference_steps": 2,
            "eta": 0.1,
            "strength": 0.8,
            "guidance_scale": 3,
            "source_guidance_scale": 1,
            "output_type": "numpy",
        }
        return inputs

    def test_stable_diffusion_cycle(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        components = self.get_dummy_components()
        pipe = CycleDiffusionPipeline(**components)
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        output = pipe(**inputs)
        images = output.images

        image_slice = images[0, -3:, -3:, -1]

        assert images.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
    def test_stable_diffusion_cycle_fp16(self):
        components = self.get_dummy_components()
        for name, module in components.items():
            if hasattr(module, "half"):
                components[name] = module.half()
        pipe = CycleDiffusionPipeline(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)
        images = output.images

        image_slice = images[0, -3:, -3:, -1]

        assert images.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @skip_mps
    def test_save_load_local(self):
        return super().test_save_load_local()

    @unittest.skip("non-deterministic pipeline")
    def test_inference_batch_single_identical(self):
        return super().test_inference_batch_single_identical()

    @skip_mps
    def test_dict_tuple_outputs_equivalent(self):
        return super().test_dict_tuple_outputs_equivalent()

    @skip_mps
    def test_save_load_optional_components(self):
        return super().test_save_load_optional_components()

    @skip_mps
    def test_attention_slicing_forward_pass(self):
        return super().test_attention_slicing_forward_pass()


@slow
@require_torch_gpu
class CycleDiffusionPipelineIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_cycle_diffusion_pipeline_fp16(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/cycle-diffusion/black_colored_car.png"
        )
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy"
        )
        init_image = init_image.resize((512, 512))

        model_id = "CompVis/stable-diffusion-v1-4"
        scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
        pipe = CycleDiffusionPipeline.from_pretrained(
            model_id, scheduler=scheduler, safety_checker=None, torch_dtype=torch.float16, revision="fp16"
        )

        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        source_prompt = "A black colored car"
        prompt = "A blue colored car"

        generator = torch.manual_seed(0)
        output = pipe(
            prompt=prompt,
            source_prompt=source_prompt,
            image=init_image,
            num_inference_steps=100,
            eta=0.1,
            strength=0.85,
            guidance_scale=3,
            source_guidance_scale=1,
            generator=generator,
            output_type="np",
        )
        image = output.images

        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(image - expected_image).max() < 5e-1

    def test_cycle_diffusion_pipeline(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/cycle-diffusion/black_colored_car.png"
        )
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy"
        )
        init_image = init_image.resize((512, 512))

        model_id = "CompVis/stable-diffusion-v1-4"
        scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
        pipe = CycleDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, safety_checker=None)

        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        source_prompt = "A black colored car"
        prompt = "A blue colored car"

        generator = torch.manual_seed(0)
        output = pipe(
            prompt=prompt,
            source_prompt=source_prompt,
            image=init_image,
            num_inference_steps=100,
            eta=0.1,
            strength=0.85,
            guidance_scale=3,
            source_guidance_scale=1,
            generator=generator,
            output_type="np",
        )
        image = output.images

        assert np.abs(image - expected_image).max() < 1e-2