Spaces:
Sleeping
Sleeping
File size: 2,056 Bytes
b7997c9 bf24ba2 b7997c9 891e0e9 8e9bd85 b7997c9 891e0e9 b7997c9 891e0e9 b7997c9 891e0e9 b7997c9 891e0e9 8e9bd85 b7997c9 891e0e9 b7997c9 891e0e9 b7997c9 891e0e9 b7997c9 891e0e9 b7997c9 bf24ba2 b7997c9 891e0e9 bf24ba2 891e0e9 bf24ba2 3d2f114 bf24ba2 891e0e9 bf24ba2 b7997c9 891e0e9 3d2f114 6022e1b 2aa7bb1 3d2f114 b7997c9 891e0e9 b7997c9 6022e1b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import tensorflow as tf
from tensorflow.keras.preprocessing import image
from tensorflow.keras.models import load_model
from tensorflow.keras.applications.efficientnet import preprocess_input
model = load_model("efficent_netB7.h5")
waste_labels = {0: 'Fibres', 1: 'Nanowires', 2: 'Particles', 3: 'Powder'}
def classify_image(pil_image):
img = image.img_to_array(pil_image)
img = tf.image.resize(img, (600, 600))
img = np.expand_dims(img, axis=0)
img = preprocess_input(img)
prediction = model.predict(img)
predicted_class = np.argmax(prediction)
predicted_class_name = waste_labels[predicted_class]
confidence = prediction[0, np.argmax(prediction)]
class_names = list(waste_labels.values())
probabilities = prediction[0]
print(class_names)
print(probabilities)
plt.bar(class_names, probabilities, color='blue')
plt.xlabel('Waste Classes')
plt.ylabel('Probability')
plt.title('Prediction Probabilities')
plt.savefig('prediction_plot.png')
plt.close()
output_text = f"Predicted Class: {predicted_class_name}, Confidence: {confidence:.4f}\n"
for class_name, prob in zip(class_names, probabilities):
output_text += f"{class_name}: {prob:.4f}\n"
return output_text, 'prediction_plot.png'
iface = gr.Interface(fn=classify_image,
inputs="image",
outputs=["text", "image"],
examples=["L9_1b95a3808073c0edad3454d1dedf3dcc.jpg","L6_0a171beb21a6f4d6fef31f8ccb400eae.jpg","L2_00a6b5e9806a8b072b98fdeacb3f45b5.jpg","L4_0b02898e9d31954dd5378e0ffbdb9a41.jpg"],
title= "SEM IMAGES CLASSIFICATION",
description= "Fibres, Nanowires, Particles, Powder SEM görüntülerini sınıflandıran model arayüzü",
theme=gr.themes.Monochrome(),
live=True)
iface.launch()
|