File size: 4,349 Bytes
efe44f0
 
 
 
 
18f610c
efe44f0
b0f1309
efe44f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b8d341
979c1be
6b8d341
 
efe44f0
 
6b8d341
 
efe44f0
 
6b8d341
efe44f0
 
6b8d341
 
 
efe44f0
6b8d341
efe44f0
 
 
 
 
 
 
 
6b8d341
efe44f0
 
 
8d3b84c
 
 
 
efe44f0
8d3b84c
 
efe44f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import time
from threading import Thread
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import gradio as gr
import torch
import spaces

model_id = "DeepMount00/Llama-3-8b-Ita"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto").eval()  # to("cuda:0")

DESCRIPTION = '''
<div>
<h1 style="text-align: center;">Meta Llama3 8B Ita</h1>
<p>This Space demonstrates the instruction-tuned model <a href="https://huggingface.co/DeepMount00/Llama-3-8b-Ita"><b>Meta Llama3 8b Chat</b></a>.</p>
</div>
'''
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
   <img src="https://cdn-avatars.huggingface.co/v1/production/uploads/64f1bf6a8b550e875926a590/9IXg0qMUF0OV2cWPT8cZn.jpeg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.50;  "> 
   <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">DeepMount00 llama3</h1>
   <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Chiedimi qualsiasi cosa...</p>
</div>
"""


css = """
h1 {
  text-align: center;
  display: block;
}
"""

@spaces.GPU(duration=120)
def chat_llama3_8b(message: str, history: list, temperature: float, max_new_tokens: int) -> str:
    # Initialize the conversation with a system prompt
    conversation = [{"role": "system", "content": "Sei un assistente specializzato nella lingua italiana."}]
    
    # Add historical conversation
    for user, assistant in history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    
    # Add the current user message to the conversation
    conversation.append({"role": "user", "content": message})

    # Prepare the input for the model
    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)

    # Parameters for generating text
    do_sample = True if temperature > 0 else False  # Use sampling unless temperature is 0
    real_temperature = max(temperature, 0.001)  # Avoid zero temperature which disables sampling

    # Generate a response from the model
    generated_ids = model.generate(
        input_ids=input_ids,
        max_new_tokens=max_new_tokens,
        do_sample=do_sample,
        temperature=real_temperature,
        eos_token_id=tokenizer.eos_token_id
    )

    # Decode the generated tokens
    decoded = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
    prompt_end_index = decoded[0].find(message) + len(message)
    final_response = decoded[0][prompt_end_index:] if prompt_end_index != -1 else decoded[0]
    
    final_response = final_response.strip("assistant")
    if final_response.startswith(':'):
        final_response = final_response.lstrip(':').strip()

    return final_response
    


# Gradio block
chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')

with gr.Blocks(fill_height=True, css=css) as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
    gr.ChatInterface(
        fn=chat_llama3_8b,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(minimum=0,
                      maximum=1,
                      step=0.1,
                      value=0.001,
                      label="Temperature",
                      render=False),
            gr.Slider(minimum=128,
                      maximum=4096,
                      step=1,
                      value=512,
                      label="Max new tokens",
                      render=False),
        ],
        examples=[
            ['Quanto è alta la torre di Pisa?'],
            ["Se un mattone pesa 1kg più mezzo mattone, quanto pesa il mattone? rispondi impostando l'equazione"],
            ['Quanto fa 9.000 * 9.000?'],
            ['Scrivi una funzione python che calcola i primi n numeri di fibonacci'],
            ['Inventa tre indovinelli tutti diversi con le relative risposte in formato json']
        ],
        cache_examples=False,
    )


if __name__ == "__main__":
    demo.launch()