Spaces:
Sleeping
Sleeping
File size: 6,275 Bytes
e407f50 7c466b0 e407f50 f9fe6a2 766fe34 a97fead 7c466b0 10b839f a97fead d021e73 7631ee8 10b839f 7c2f198 7631ee8 7942eff 7631ee8 7942eff c98d831 7942eff 8303b37 7942eff 7631ee8 a97fead 10b839f 7c466b0 7631ee8 8303b37 f9fe6a2 10b839f 766fe34 10b839f 766fe34 10b839f 766fe34 10b839f 7c466b0 766fe34 c98d831 2bd5909 10b839f 9dbcd94 601f488 7c466b0 f9fe6a2 10b839f 766fe34 10b839f 9d02764 c98d831 10b839f 7c466b0 f9fe6a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
import os
import gradio as gr
import aiohttp
import asyncio
import json
import urllib.parse
import traceback
LLM_API = os.environ.get("LLM_API")
LLM_URL = os.environ.get("LLM_URL")
USER_ID = "HuggingFace Space"
async def send_chat_message(LLM_URL, LLM_API, user_input):
payload = {
"inputs": {},
"query": user_input,
"response_mode": "streaming",
"conversation_id": "",
"user": USER_ID,
}
print("Sending chat message payload:", payload)
async with aiohttp.ClientSession() as session:
try:
async with session.post(
url=f"{LLM_URL}/chat-messages",
headers={"Authorization": f"Bearer {LLM_API}"},
json=payload,
timeout=aiohttp.ClientTimeout(total=180)
) as response:
if response.status != 200:
print(f"Error: {response.status}")
return f"Error: Status code {response.status}"
full_response = []
async for line in response.content.iter_chunked(2048):
line = line.decode('utf-8').strip()
if not line or "data: " not in line:
continue
try:
data = json.loads(line.split("data: ")[1])
if "answer" in data:
decoded_answer = urllib.parse.unquote(data["answer"])
full_response.append(decoded_answer)
except (IndexError, json.JSONDecodeError) as e:
print(f"Skipping invalid line: {line}, error: {e}")
continue
if full_response:
return ''.join(full_response).strip()
else:
return "Error: No response found in the response"
except aiohttp.ClientConnectorError:
return "Error: Cannot connect to the API server. Please check the URL and server status."
except Exception as e:
print("Exception occurred in send_chat_message:")
print(traceback.format_exc())
return f"Exception: {e}"
async def handle_input(user_input):
print(f"Handling input: {user_input}")
chat_response = await send_chat_message(LLM_URL, LLM_API, user_input)
print("Chat response:", chat_response)
return chat_response
def run_sync(func, *args):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
result = loop.run_until_complete(func(*args))
loop.close()
return result
# 定義 Gradio 介面
user_input = gr.Textbox(label='請輸入您想查詢的關鍵公司名稱')
examples = [
["加密貨幣"],
# ["國泰金控"],
["中華電信"],
# ["台灣大哥大"],
["台積電"],
# ["BlockTempo"]
]
TITLE = """<h1>Social Media Trends 💬 分析社群相關資訊,並判斷其正、負、中立等評價及趨勢 (數據大會跑很久或失敗) </h1>"""
SUBTITLE = """<h2><a href='https://www.twman.org' target='_blank'>TonTon Huang Ph.D.</a> | <a href='https://blog.twman.org/p/deeplearning101.html' target='_blank'>手把手帶你一起踩AI坑</a><br></h2>"""
LINKS = """
<a href='https://github.com/Deep-Learning-101' target='_blank'>Deep Learning 101 Github</a> | <a href='http://deeplearning101.twman.org' target='_blank'>Deep Learning 101</a> | <a href='https://www.facebook.com/groups/525579498272187/' target='_blank'>台灣人工智慧社團 FB</a> | <a href='https://www.youtube.com/c/DeepLearning101' target='_blank'>YouTube</a><br>
<a href='https://blog.twman.org/2025/03/AIAgent.html' target='_blank'>那些 AI Agent 要踩的坑</a>:探討多種 AI 代理人工具的應用經驗與挑戰,分享實用經驗與工具推薦。<br>
<a href='https://blog.twman.org/2024/08/LLM.html' target='_blank'>白話文手把手帶你科普 GenAI</a>:淺顯介紹生成式人工智慧核心概念,強調硬體資源和數據的重要性。<br>
<a href='https://blog.twman.org/2024/09/LLM.html' target='_blank'>大型語言模型直接就打完收工?</a>:回顧 LLM 領域探索歷程,討論硬體升級對 AI 開發的重要性。<br>
<a href='https://blog.twman.org/2024/07/RAG.html' target='_blank'>那些檢索增強生成要踩的坑</a>:探討 RAG 技術應用與挑戰,提供實用經驗分享和工具建議。<br>
<a href='https://blog.twman.org/2024/02/LLM.html' target='_blank'>那些大型語言模型要踩的坑</a>:探討多種 LLM 工具的應用與挑戰,強調硬體資源的重要性。<br>
<a href='https://blog.twman.org/2023/04/GPT.html' target='_blank'>Large Language Model,LLM</a>:探討 LLM 的發展與應用,強調硬體資源在開發中的關鍵作用。。<br>
<a href='https://blog.twman.org/2024/11/diffusion.html' target='_blank'>ComfyUI + Stable Diffuision</a>:深入探討影像生成與分割技術的應用,強調硬體資源的重要性。<br>
<a href='https://blog.twman.org/2024/02/asr-tts.html' target='_blank'>那些ASR和TTS可能會踩的坑</a>:探討 ASR 和 TTS 技術應用中的問題,強調數據質量的重要性。<br>
<a href='https://blog.twman.org/2021/04/NLP.html' target='_blank'>那些自然語言處理 (Natural Language Processing, NLP) 踩的坑</a>:分享 NLP 領域的實踐經驗,強調數據質量對模型效果的影響。<br>
<a href='https://blog.twman.org/2021/04/ASR.html' target='_blank'>那些語音處理 (Speech Processing) 踩的坑</a>:分享語音處理領域的實務經驗,強調資料品質對模型效果的影響。<br>
<a href='https://blog.twman.org/2023/07/wsl.html' target='_blank'>用PPOCRLabel來幫PaddleOCR做OCR的微調和標註</a><br>
<a href='https://blog.twman.org/2023/07/HugIE.html' target='_blank'>基於機器閱讀理解和指令微調的統一信息抽取框架之診斷書醫囑資訊擷取分析</a><br>
"""
# 使用 Gradio Blocks 設定頁面內容
with gr.Blocks() as iface:
gr.HTML(TITLE)
gr.HTML(SUBTITLE)
gr.HTML(LINKS)
gr.Interface(
fn=lambda x: run_sync(handle_input, x),
inputs=user_input,
outputs="text",
examples=examples,
flagging_mode="never" # 停用範例加載
)
iface.launch()
|