File size: 9,029 Bytes
aa2adce
 
 
 
 
 
 
 
51241c4
 
 
 
 
 
 
 
 
 
 
 
aa2adce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72aa449
aa2adce
 
 
 
 
72aa449
 
 
aa2adce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a094ce9
 
 
a573630
 
a094ce9
 
 
 
 
 
aa2adce
 
be68cb9
80eb4d5
aa2adce
 
25f1890
80eb4d5
 
9ede8ac
 
aa2adce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72aa449
aa2adce
 
 
 
 
 
 
 
 
 
 
 
 
3f58574
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import os
import gradio as gr
import aiohttp
import asyncio
import json
from datasets import Dataset, DatasetDict, load_dataset
from huggingface_hub import HfFolder

import subprocess

def upgrade_pip():
    try:
        subprocess.check_call([os.sys.executable, "-m", "pip", "install", "--upgrade", "pip"])
        print("pip 升級成功")
    except subprocess.CalledProcessError:
        print("pip 升級失敗")

# 呼叫升級函數
upgrade_pip()

# 從環境變量中獲取 Hugging Face API 令牌和其他配置
HF_API_TOKEN = os.environ.get("Feedback_API_TOKEN")
LLM_API = os.environ.get("LLM_API")
LLM_URL = os.environ.get("LLM_URL")
USER_ID = "HuggingFace Space"
DATASET_NAME = os.environ.get("DATASET_NAME")

# 確保令牌不為空
if HF_API_TOKEN is None:
    raise ValueError("HF_API_TOKEN 環境變量未設置。請在 Hugging Face Space 的設置中添加該環境變量。")

# 設置 Hugging Face API 令牌
HfFolder.save_token(HF_API_TOKEN)

# 定義數據集特徵
features = {
    "user_input": "string",
    "response": "string",
    "feedback_type": "string",
    "improvement": "string"
}

# 加載或創建數據集
try:
    dataset = load_dataset(DATASET_NAME)
except:
    dataset = DatasetDict({
        "feedback": Dataset.from_dict({
            "user_input": [],
            "response": [],
            "feedback_type": [],
            "improvement": []
        })
    })

async def send_chat_message(LLM_URL, LLM_API, user_input):
    payload = {
        "inputs": {},
        "query": user_input,
        "response_mode": "streaming",
        "conversation_id": "",
        "user": USER_ID,
    }
    print("Sending chat message payload:", payload)  # Debug information

    async with aiohttp.ClientSession() as session:
        try:
            async with session.post(
                url=f"{LLM_URL}/chat-messages",
                headers={"Authorization": f"Bearer {LLM_API}"},
                json=payload,
                timeout=aiohttp.ClientTimeout(total=60)
            ) as response:
                if response.status != 200:
                    print(f"Error: {response.status}")
                    return f"Error: {response.status}"

                full_response = []
                async for line in response.content:
                    line = line.decode('utf-8').strip()
                    if not line:
                        continue
                    if "data: " not in line:
                        continue
                    try:
                        print("Received line:", line)  # Debug information
                        data = json.loads(line.split("data: ")[1])
                        if "answer" in data:
                            full_response.append(data["answer"])
                    except (IndexError, json.JSONDecodeError) as e:
                        print(f"Error parsing line: {line}, error: {e}")  # Debug information
                        continue

                if full_response:
                    return ''.join(full_response).strip()
                else:
                    return "Error: No response found in the response"
        except Exception as e:
            print(f"Exception: {e}")
            return f"Exception: {e}"

async def handle_input_async(user_input):
    print(f"Handling input: {user_input}")
    chat_response = await send_chat_message(LLM_URL, LLM_API, user_input)
    print("Chat response:", chat_response)  # Debug information
    return chat_response

def handle_input(user_input):
    print(f"Handling input synchronously: {user_input}")
    return asyncio.run(handle_input_async(user_input))

def save_feedback(user_input, response, feedback_type, improvement):
    feedback = {
        "user_input": user_input,
        "response": response,
        "feedback_type": feedback_type,
        "improvement": improvement
    }
    print(f"Saving feedback: {feedback}")
    # Append to the dataset
    new_data = {
        "user_input": [user_input],
        "response": [response],
        "feedback_type": [feedback_type],
        "improvement": [improvement]
    }
    global dataset
    dataset["feedback"] = Dataset.from_dict({
        "user_input": dataset["feedback"]["user_input"] + [user_input],
        "response": dataset["feedback"]["response"] + [response],
        "feedback_type": dataset["feedback"]["feedback_type"] + [feedback_type],
        "improvement": dataset["feedback"]["improvement"] + [improvement]
    })
    dataset.push_to_hub(DATASET_NAME)

def handle_feedback(response, feedback_type, improvement):
    global last_user_input
    save_feedback(last_user_input, response, feedback_type, improvement)
    return "感謝您的反饋!"

# 讀取並顯示反饋內容的函數
def show_feedback():
    try:
        feedbacks = dataset["feedback"].to_pandas().to_dict(orient="records")
        print(f"Feedbacks: {feedbacks}")  # Debug information
        return feedbacks
    except Exception as e:
        print(f"Error: {e}")  # Debug information
        return {"error": str(e)}

TITLE = """<h1>Large Language Model (LLM) Playground 💬 <a href='https://www.cathaylife.com.tw/cathaylifeins/faq' target='_blank'> Insurance FAQ </a></h1>"""
SUBTITLE = """<h2><a href='https://www.twman.org' target='_blank'>TonTon Huang Ph.D. @ 2024/04 </a><br></h2>"""
LINKS = """
<a href='https://github.com/Deep-Learning-101' target='_blank'>Deep Learning 101 Github</a> | <a href='http://deeplearning101.twman.org' target='_blank'>Deep Learning 101</a> | <a href='https://www.facebook.com/groups/525579498272187/' target='_blank'>台灣人工智慧社團 FB</a> | <a href='https://www.youtube.com/c/DeepLearning101' target='_blank'>YouTube</a><br>
<a href='https://reurl.cc/g6GlZX' target='_blank'>手把手帶你一起踩AI坑</a> | <a href='https://blog.twman.org/2024/11/diffusion.html' target='_blank'>ComfyUI + Stable Diffuision</a><br>
<a href='https://blog.twman.org/2024/08/LLM.html' target='_blank'>白話文手把手帶你科普 GenAI</a> | <a href='https://blog.twman.org/2024/09/LLM.html' target='_blank'>大型語言模型直接就打完收工?</a><br>
<a href='https://blog.twman.org/2023/04/GPT.html' target='_blank'>什麼是大語言模型,它是什麼?想要嗎?</a> | <a href='https://blog.twman.org/2024/07/RAG.html' target='_blank'>那些檢索增強生成要踩的坑 </a><br>
<a href='https://blog.twman.org/2021/04/ASR.html' target='_blank'>那些語音處理 (Speech Processing) 踩的坑</a> | <a href='https://blog.twman.org/2021/04/NLP.html' target='_blank'>那些自然語言處理 (Natural Language Processing, NLP) 踩的坑</a><br>
<a href='https://blog.twman.org/2024/02/asr-tts.html' target='_blank'>那些ASR和TTS可能會踩的坑</a> | <a href='https://blog.twman.org/2024/02/LLM.html' target='_blank'>那些大模型開發會踩的坑</a><br>
<a href='https://blog.twman.org/2023/07/wsl.html' target='_blank'>用PPOCRLabel來幫PaddleOCR做OCR的微調和標註</a> | <a href='https://blog.twman.org/2023/07/HugIE.html' target='_blank'>基於機器閱讀理解和指令微調的統一信息抽取框架之診斷書醫囑資訊擷取分析</a><br>
"""
# 添加示例
examples = [
    ["什麼是實支實付?"],
    ["我要查房貸利率"],
    ["保險天數如何計算"],
    ["CaaS是什麼?"],
    ["介紹機車強制險?"],
    ["汽車強制險怎保"],
    ["汽車第三人責任險與強制汽/機車責任險有什麼差別?"],    
    ["青壯年生涯保險?中年生涯保險?高齡生涯保險??"],
    ["微型保險是什麼?"]
]

with gr.Blocks() as iface:
    gr.HTML(TITLE)
    gr.HTML(SUBTITLE)
    gr.HTML(LINKS)
    with gr.Row():
        chatbot = gr.Chatbot()
    
    with gr.Row():
        user_input = gr.Textbox(label='輸入您的問題', placeholder="在此輸入問題...")
        submit_button = gr.Button("問題輸入好,請點我送出")
    
    gr.Examples(examples=examples, inputs=user_input)
        
    with gr.Row():
        dislike_button = gr.Button(" 👎 覺得答案待改善,請輸入改進建議,再按我送出保存")
        improvement_input = gr.Textbox(label='請輸入改進建議', placeholder='請輸入如何改進模型回應的建議')

    with gr.Row():
        feedback_output = gr.Textbox(label='反饋結果執行狀態', interactive=False)
    with gr.Row():
        show_feedback_button = gr.Button("查看目前所有反饋記錄")
        feedback_display = gr.JSON(label='所有反饋記錄')

    def chat(user_input, history):
        response = handle_input(user_input)
        history.append((user_input, response))
        return history, history

    submit_button.click(fn=chat, inputs=[user_input, chatbot], outputs=[chatbot, chatbot])

    dislike_button.click(
        fn=lambda response, improvement: handle_feedback(response, "dislike", improvement),
        inputs=[chatbot, improvement_input],
        outputs=feedback_output
    )

    show_feedback_button.click(fn=show_feedback, outputs=feedback_display)

iface.launch()