DeepLearning101's picture
Upload 6 files
ea0fb2f
raw
history blame
3.52 kB
# -*- coding: utf-8 -*-
# @Time : 2023/5/6 3:53 p.m.
# @Author : JianingWang
# @File : actor.py
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoModelForCausalLM, AutoConfig
from models.basic_modules.generation import generate
"""
Actor model.
"""
class Actor(nn.Module):
"""
Actor model base class.
Args:
model (nn.Module): Actor Model.
"""
def __init__(self, model: nn.Module) -> None:
self.model = model
def log_probs_from_logits(logits: torch.Tensor, labels: torch.Tensor) -> torch.Tensor:
log_probs = F.log_softmax(logits, dim=-1)
log_probs_labels = log_probs.gather(dim=-1, index=labels.unsqueeze(-1))
return log_probs_labels.squeeze(-1)
"""
For generative model, needs generate function.
"""
@torch.no_grad()
def generate(
self,
input_ids: torch.Tensor,
return_action_mask: bool = True,
**kwargs
) -> Union[Tuple[torch.LongTensor, torch.LongTensor], Tuple[torch.LongTensor, torch.LongTensor, torch.BoolTensor]]:
sequences = generate(self.model, input_ids, **kwargs)
attention_mask = None
pad_token_id = kwargs.get('pad_token_id', None)
if pad_token_id is not None:
attention_mask = sequences.not_equal(pad_token_id).to(dtype=torch.long, device=sequences.device)
if not return_action_mask:
return sequences, attention_mask, None
input_len = input_ids.size(1)
eos_token_id = kwargs.get('eos_token_id', None)
if eos_token_id is None:
action_mask = torch.ones_like(sequences, dtype=torch.bool)
else:
# left padding may be applied, only mask action
action_mask = (sequences[:, input_len:] == eos_token_id).cumsum(dim=-1) == 0
action_mask = F.pad(action_mask, (1 + input_len, -1), value=True) # include eos token and input
action_mask[:, :input_len] = False
action_mask = action_mask[:, 1:]
return sequences, attention_mask, action_mask[:, -(sequences.size(1) - input_len):]
def forward(self,
sequences: torch.LongTensor,
num_actions: int,
attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
"""Returns action log probs
"""
output = self.model(sequences, attention_mask=attention_mask)
logits = output['logits']
log_probs = self.log_probs_from_logits(logits[:, :-1, :], sequences[:, 1:])
return log_probs[:, -num_actions:]
def get_base_model(self):
return self.model
"""
Causal LM as a actor, e.g., GPT-2, OPT, BLOOM, etc.
"""
class CausalActor(Actor):
"""
Causal LM Actor model.
Args:
pretrained (str): Pretrained model name or path.
config (AutoConfig): Model config.
checkpoint (bool): Enable gradient checkpointing.
"""
def __init__(self,
pretrained: str = None,
config: Optional[AutoConfig] = None,
checkpoint: bool = False) -> None:
if pretrained is not None:
model = AutoModelForCausalLM.from_pretrained(pretrained)
elif config is not None:
model = AutoModelForCausalLM(config)
else:
model = AutoModelForCausalLM(AutoConfig())
if checkpoint:
model.gradient_checkpointing_enable()
super().__init__(model)