Spaces:
Sleeping
Sleeping
DeepLearning101
commited on
Commit
•
ea0fb2f
1
Parent(s):
0d88c28
Upload 6 files
Browse files
models/instruction_prompting/causal_incontext.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
sys.path.append("./")
|
3 |
+
sys.path.append("../")
|
4 |
+
sys.path.append("../../")
|
5 |
+
sys.path.append("../../../")
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import transformers
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from typing import Optional, Tuple, Union
|
11 |
+
from torch.nn import CrossEntropyLoss
|
12 |
+
from transformers import AutoModelForCausalLM
|
13 |
+
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
14 |
+
from transformers.models.gpt2.modeling_gpt2 import GPT2PreTrainedModel, GPT2Model, GPT2LMHeadModel
|
15 |
+
from tools.runner_utils.log_util import logging
|
16 |
+
from tools.model_utils.parameter_freeze import ParameterFreeze
|
17 |
+
|
18 |
+
logger = logging.getLogger(__name__)
|
19 |
+
freezer = ParameterFreeze()
|
20 |
+
|
21 |
+
"""
|
22 |
+
Function: Use Causal LM to prompt for cls
|
23 |
+
Notes:
|
24 |
+
- For classification, the model only calculate the loss at the position of label, the other position is set as -100
|
25 |
+
- During inference, generate result at the last position.
|
26 |
+
"""
|
27 |
+
|
28 |
+
|
29 |
+
class GPT2ForInContextLearning(GPT2PreTrainedModel):
|
30 |
+
_keys_to_ignore_on_load_missing = [r"attn.masked_bias", r"attn.bias", r"lm_head.weight"]
|
31 |
+
|
32 |
+
def __init__(self, config):
|
33 |
+
super().__init__(config)
|
34 |
+
self.transformer = GPT2Model(config)
|
35 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
36 |
+
|
37 |
+
# if self.config.use_freezing:
|
38 |
+
# self.transformer = freezer.freeze_lm(self.transformer)
|
39 |
+
|
40 |
+
# Model parallel
|
41 |
+
self.model_parallel = False
|
42 |
+
self.device_map = None
|
43 |
+
|
44 |
+
# Initialize weights and apply final processing
|
45 |
+
self.post_init()
|
46 |
+
|
47 |
+
def get_output_embeddings(self):
|
48 |
+
return self.lm_head
|
49 |
+
|
50 |
+
def set_output_embeddings(self, new_embeddings):
|
51 |
+
self.lm_head = new_embeddings
|
52 |
+
|
53 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
54 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
55 |
+
# only last token for inputs_ids if past is defined in kwargs
|
56 |
+
if past:
|
57 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
58 |
+
if token_type_ids is not None:
|
59 |
+
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
60 |
+
|
61 |
+
attention_mask = kwargs.get("attention_mask", None)
|
62 |
+
position_ids = kwargs.get("position_ids", None)
|
63 |
+
|
64 |
+
if attention_mask is not None and position_ids is None:
|
65 |
+
# create position_ids on the fly for batch generation
|
66 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
67 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
68 |
+
if past:
|
69 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
70 |
+
else:
|
71 |
+
position_ids = None
|
72 |
+
return {
|
73 |
+
"input_ids": input_ids,
|
74 |
+
"past_key_values": past,
|
75 |
+
"use_cache": kwargs.get("use_cache"),
|
76 |
+
"position_ids": position_ids,
|
77 |
+
"attention_mask": attention_mask,
|
78 |
+
"token_type_ids": token_type_ids,
|
79 |
+
}
|
80 |
+
|
81 |
+
def forward(
|
82 |
+
self,
|
83 |
+
input_ids: Optional[torch.LongTensor] = None,
|
84 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
85 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
86 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
87 |
+
position_ids: Optional[torch.LongTensor] = None,
|
88 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
89 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
90 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
91 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
92 |
+
labels: Optional[torch.LongTensor] = None,
|
93 |
+
use_cache: Optional[bool] = None,
|
94 |
+
output_attentions: Optional[bool] = None,
|
95 |
+
output_hidden_states: Optional[bool] = None,
|
96 |
+
return_dict: Optional[bool] = None,
|
97 |
+
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
98 |
+
r"""
|
99 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
100 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
101 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
102 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
103 |
+
"""
|
104 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
105 |
+
|
106 |
+
transformer_outputs = self.transformer(
|
107 |
+
input_ids,
|
108 |
+
past_key_values=past_key_values,
|
109 |
+
attention_mask=attention_mask,
|
110 |
+
token_type_ids=token_type_ids,
|
111 |
+
position_ids=position_ids,
|
112 |
+
head_mask=head_mask,
|
113 |
+
inputs_embeds=inputs_embeds,
|
114 |
+
encoder_hidden_states=encoder_hidden_states,
|
115 |
+
encoder_attention_mask=encoder_attention_mask,
|
116 |
+
use_cache=use_cache,
|
117 |
+
output_attentions=output_attentions,
|
118 |
+
output_hidden_states=output_hidden_states,
|
119 |
+
return_dict=return_dict,
|
120 |
+
)
|
121 |
+
hidden_states = transformer_outputs[0]
|
122 |
+
|
123 |
+
# Set device for model parallelism
|
124 |
+
if self.model_parallel:
|
125 |
+
torch.cuda.set_device(self.transformer.first_device)
|
126 |
+
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
127 |
+
|
128 |
+
lm_logits = self.lm_head(hidden_states)
|
129 |
+
|
130 |
+
loss = None
|
131 |
+
if labels is not None:
|
132 |
+
# Shift so that tokens < n predict n
|
133 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
134 |
+
shift_labels = labels[..., 1:].contiguous()
|
135 |
+
# print("shift_labels=", shift_labels)
|
136 |
+
# Flatten the tokens
|
137 |
+
loss_fct = CrossEntropyLoss()
|
138 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
139 |
+
|
140 |
+
if not return_dict:
|
141 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
142 |
+
return ((loss,) + output) if loss is not None else output
|
143 |
+
|
144 |
+
return CausalLMOutputWithCrossAttentions(
|
145 |
+
loss=loss,
|
146 |
+
logits=lm_logits,
|
147 |
+
past_key_values=transformer_outputs.past_key_values,
|
148 |
+
hidden_states=transformer_outputs.hidden_states,
|
149 |
+
attentions=transformer_outputs.attentions,
|
150 |
+
cross_attentions=transformer_outputs.cross_attentions,
|
151 |
+
)
|
152 |
+
|
153 |
+
|
154 |
+
@staticmethod
|
155 |
+
def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
|
156 |
+
"""
|
157 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
158 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
159 |
+
beam_idx at every generation step.
|
160 |
+
"""
|
161 |
+
return tuple(
|
162 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
163 |
+
for layer_past in past
|
164 |
+
)
|
165 |
+
|
166 |
+
|
167 |
+
|
168 |
+
|
169 |
+
if __name__ == "__main__":
|
170 |
+
from transformers import GPT2Tokenizer
|
171 |
+
tokenizer = GPT2Tokenizer.from_pretrained("/Users/wangjianing/Desktop/开源代码与数据模型/模型/gpt2")
|
172 |
+
model = GPT2ForInContextLearning.from_pretrained("/Users/wangjianing/Desktop/开源代码与数据模型/模型/gpt2")
|
173 |
+
|
174 |
+
# In-Context Learning for classification
|
175 |
+
# input_text = "The capital city of China is Beijing. \n\n The capital city of Japan is Tokyo. \n\n The capital city of America is"
|
176 |
+
input_text = "What are follows emotions? \n\n Input: The book is very nice.\n Output: Great. \n\n Input: I never eat chocolate!\n Output:"
|
177 |
+
# input_text = "This film is wonderful.\n Great."
|
178 |
+
tokenizer.pad_token = tokenizer.eos_token
|
179 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
180 |
+
input_len = inputs["input_ids"].shape[-1]
|
181 |
+
gen_output = model.generate(**inputs, max_length=input_len + 10)
|
182 |
+
gen_result = tokenizer.decode(gen_output[0])
|
183 |
+
print("classification result:\n", gen_result)
|
184 |
+
|
185 |
+
# In-Context Learning for generation
|
186 |
+
input_text = "Please tell me what is the transformer? "
|
187 |
+
# input_text = "This film is wonderful.\n Great."
|
188 |
+
tokenizer.pad_token = tokenizer.eos_token
|
189 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
190 |
+
input_len = inputs["input_ids"].shape[-1]
|
191 |
+
gen_output = model.generate(**inputs, max_length=input_len + 60)
|
192 |
+
gen_result = tokenizer.decode(gen_output[0])
|
193 |
+
print("generation result:\n", gen_result)
|
models/instruction_prompting/incontext.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from tqdm import tqdm
|
3 |
+
from typing import Optional, Tuple
|
4 |
+
from turtle import forward
|
5 |
+
from torch.nn import CrossEntropyLoss
|
6 |
+
from transformers import AutoModelForCausalLM
|
7 |
+
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
8 |
+
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel, GPT2Model
|
9 |
+
|
10 |
+
|
11 |
+
class GPT2ForInContextClassification(GPT2LMHeadModel):
|
12 |
+
|
13 |
+
def forward(
|
14 |
+
self,
|
15 |
+
input_ids: Optional[torch.LongTensor] = None, # input token id
|
16 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
17 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
18 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
19 |
+
labels: Optional[torch.LongTensor] = None,
|
20 |
+
label_masks: Optional[torch.LongTensor] = None, # mask=1 means it should be calculated loss
|
21 |
+
options :Optional[list] = None, # 如果是分类任务,则可以添加候选label
|
22 |
+
output_attentions=None,
|
23 |
+
output_hidden_states=None,
|
24 |
+
return_dict=None,
|
25 |
+
):
|
26 |
+
assert len(input_ids.shape) == 3 and input_ids.shape[1] == len(options) # [n, option_size, len]
|
27 |
+
batch_size = input_ids.shape[0]
|
28 |
+
option_size = input_ids.shape[1]
|
29 |
+
input_ids = input_ids.view(-1, input_ids.shape[1], input_ids.shape[2]) # [n*option_size, len]
|
30 |
+
attention_mask = attention_mask.view(-1, input_ids.shape[1], input_ids.shape[2]) if attention_mask is not None else None # [n*option_size, len]
|
31 |
+
token_type_ids = token_type_ids.view(-1, input_ids.shape[1], input_ids.shape[2]) if token_type_ids is not None else None# [n*option_size, len]
|
32 |
+
# labels = labels.view(-1, input_ids.shape[1], input_ids.shape[2]) # [n*option_size, len]
|
33 |
+
|
34 |
+
transformer_outputs = self.transformer(
|
35 |
+
input_ids,
|
36 |
+
past_key_values=past_key_values,
|
37 |
+
attention_mask=attention_mask,
|
38 |
+
token_type_ids=token_type_ids,
|
39 |
+
output_attentions=output_attentions,
|
40 |
+
output_hidden_states=output_hidden_states,
|
41 |
+
return_dict=return_dict,
|
42 |
+
)
|
43 |
+
hidden_states = transformer_outputs[0] # [n*option_size, len, hidden_size]
|
44 |
+
lm_logits = self.lm_head(hidden_states) # [n*option_size, len, vocab_size]
|
45 |
+
lm_logits = lm_logits.view(batch_size, option_size, input_ids.shape[-1], -1) # [n, option_size, len, vocab_size]
|
46 |
+
|
47 |
+
# print("len(input_ids)=", len(input_ids[0]))
|
48 |
+
# print("input_ids[-1]=", input_ids[0][-1])
|
49 |
+
print("lm_logits.shape=", lm_logits.shape)
|
50 |
+
|
51 |
+
losses = list()
|
52 |
+
if labels is not None:
|
53 |
+
for label, lm_logit in zip(labels, lm_logits):
|
54 |
+
# label: [option_size, len]
|
55 |
+
# lm_logit: [option_size, len, vocab_size]
|
56 |
+
shift_logits = lm_logit[..., :-1, :].contiguous()
|
57 |
+
# print("shift_logits.shape=", shift_logits.shape)
|
58 |
+
shift_labels = label[..., 1:].contiguous()
|
59 |
+
# print("shift_labels=", shift_labels)
|
60 |
+
# print("shift_labels.shape=", shift_labels.shape)
|
61 |
+
# Flatten the tokens
|
62 |
+
loss_fct = CrossEntropyLoss()
|
63 |
+
print("shift_logits.shape=", shift_logits.shape)
|
64 |
+
print("shift_labels.shape=", shift_labels.shape)
|
65 |
+
loss = [loss_fct(shift_logit.view(-1, shift_logit.size(-1)), shift_label.view(-1)) for shift_logit, shift_label in zip(shift_logits, shift_labels)]
|
66 |
+
loss = torch.stack(loss)
|
67 |
+
# print("loss=", loss)
|
68 |
+
if label_masks is not None:
|
69 |
+
loss = loss.view(lm_logits.size(0), lm_logits.size(1)) * label_masks # [option_size, len]
|
70 |
+
loss = torch.sum(loss, axis=1) / torch.sum(label_mask, axis=1) # [option_size]
|
71 |
+
losses.append(loss)
|
72 |
+
losses = torch.stack(losses) # [n, option_size]
|
73 |
+
# 将各个option的loss视为logit,loss越小,对应的概率应越大
|
74 |
+
loss_logits = torch.softmax(-losses, -1) # [n, option_size]
|
75 |
+
print("losses.shape=", losses.shape)
|
76 |
+
print("loss_logits.shape=", loss_logits.shape)
|
77 |
+
|
78 |
+
if not return_dict:
|
79 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
80 |
+
return ((loss,) + output) if loss is not None else output
|
81 |
+
|
82 |
+
return CausalLMOutputWithCrossAttentions(
|
83 |
+
loss=losses,
|
84 |
+
logits=loss_logits,
|
85 |
+
past_key_values=transformer_outputs.past_key_values,
|
86 |
+
hidden_states=transformer_outputs.hidden_states,
|
87 |
+
attentions=transformer_outputs.attentions,
|
88 |
+
cross_attentions=transformer_outputs.cross_attentions,
|
89 |
+
)
|
90 |
+
|
91 |
+
if __name__ == "__main__":
|
92 |
+
from transformers import GPT2Tokenizer
|
93 |
+
tokenizer = GPT2Tokenizer.from_pretrained("/Users/wangjianing/Desktop/开源代码与数据模型/模型/gpt2")
|
94 |
+
model = GPT2ForInContextClassification.from_pretrained("/Users/wangjianing/Desktop/开源代码与数据模型/模型/gpt2")
|
95 |
+
# input_text = "The capital city of China is Beijing. The capital city of Japan is Tokyo. The capital city of America"
|
96 |
+
input_text1 = "What are follows emotions? \n\n Input: The book is very nice.\n Output: Great. \n\n Input: I never eat chocolate!\n Output: Bad. \n\n Input: This film is not wonderful.\n Output: Great"
|
97 |
+
input_text2 = "What are follows emotions? \n\n Input: The book is very nice.\n Output: Great. \n\n Input: I never eat chocolate!\n Output: Bad. \n\n Input: This film is not wonderful.\n Output: Bad"
|
98 |
+
# input_text = "This film is wonderful.\n Great."
|
99 |
+
# input_text = "Mr. Chen was born in Shanghai. Obama was born in US. Jinping Xi was born in China."
|
100 |
+
tokenizer.pad_token = tokenizer.eos_token
|
101 |
+
inputs = tokenizer(
|
102 |
+
[input_text1, input_text2], return_tensors="pt",
|
103 |
+
max_length=60,
|
104 |
+
padding="max_length")
|
105 |
+
inputs["input_ids"] = inputs["input_ids"].view(-1, inputs["input_ids"].shape[0], inputs["input_ids"].shape[1])
|
106 |
+
# inputs["token_type_ids"] = inputs["token_type_ids"].view(-1, inputs["input_ids"].shape[0], inputs["input_ids"].shape[1])
|
107 |
+
inputs["attention_mask"] = inputs["attention_mask"].view(-1, inputs["input_ids"].shape[0], inputs["input_ids"].shape[1])
|
108 |
+
inputs["labels"] = inputs["input_ids"]
|
109 |
+
inputs["options"] = torch.Tensor([[0, 1], [0, 1]]).long()
|
110 |
+
print(inputs["input_ids"].shape)
|
111 |
+
label_mask = torch.zeros([1, 2, inputs["input_ids"].shape[2]])
|
112 |
+
# print(label_mask)
|
113 |
+
label_mask[0][0][20] = 1
|
114 |
+
label_mask[0][1][20] = 1
|
115 |
+
print(label_mask)
|
116 |
+
output = model(**inputs, return_dict=True)
|
117 |
+
# print(output["last_hidden_state"])
|
118 |
+
# print(output["last_hidden_state"].size())
|
119 |
+
# print(output["logits"])
|
120 |
+
# print(output["logits"].size())
|
121 |
+
losses, logits = output["loss"], output["logits"]
|
122 |
+
print("loss=", losses)
|
123 |
+
print("logits=", logits)
|
124 |
+
# gen_output = model.generate(**inputs, max_length=60)
|
125 |
+
# for i in range(len(gen_output)):
|
126 |
+
# gen_result = tokenizer.decode(gen_output[i])
|
127 |
+
# print("gen_result=", gen_result[len(inputs["input_ids"]):])
|
models/instruction_prompting/test.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForCausalLM
|
2 |
+
from transformers import GPT2Tokenizer
|
3 |
+
from transformers.models.gpt2.modeling_gpt2 import GPT2Model, GPT2LMHeadModel
|
4 |
+
|
5 |
+
if __name__ == "__main__":
|
6 |
+
gpt2_tokenizer: GPT2Tokenizer = GPT2Tokenizer.from_pretrained("/Users/wangjianing/Desktop/开源代码与数据模型/模型/gpt2")
|
7 |
+
# gpt2_model = GPT2LMHeadModel.from_pretrained("/Users/wangjianing/Desktop/开源代码与数据模型/模型/gpt2")
|
8 |
+
# # input_text = "The capital city of China is Beijing. The capital city of Japan is Tokyo. The capital city of America"
|
9 |
+
# input_text = "What are follows emotions? \n\n The book is very nice.\n great. \n\n I never eat chocolate!\n bad. \n\n This film is wonderful.\n Great"
|
10 |
+
# # input_text = "Mr. Chen was born in Shanghai. Obama was born in US. Trump was born in"
|
11 |
+
# inputs = gpt2_tokenizer(input_text, return_tensors="pt")
|
12 |
+
# print(inputs)
|
13 |
+
# output = gpt2_model(**inputs)
|
14 |
+
# # print(output["last_hidden_state"])
|
15 |
+
# # print(output["last_hidden_state"].size())
|
16 |
+
# print(output["logits"])
|
17 |
+
# print(output["logits"].size())
|
18 |
+
# gen_output = gpt2_model.generate(**inputs, max_length=60)
|
19 |
+
# # gen_result = gpt2_tokenizer.convert_ids_to_tokens(gen_output[0])
|
20 |
+
# gen_result = gpt2_tokenizer.decode(gen_output[0])
|
21 |
+
# print(gen_result)
|
22 |
+
|
23 |
+
|
24 |
+
gpt2_tokenizer(
|
25 |
+
[["What are follows emotions?", "What are follows emotions?"], ["What are follows emotions?"]],
|
26 |
+
truncation=True,
|
27 |
+
max_length=30,
|
28 |
+
padding="max_length",
|
29 |
+
return_offsets_mapping=True
|
30 |
+
)
|
models/reinforcement_learning/actor.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# @Time : 2023/5/6 3:53 p.m.
|
3 |
+
# @Author : JianingWang
|
4 |
+
# @File : actor.py
|
5 |
+
|
6 |
+
from typing import Optional, Tuple, Union
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
from transformers import AutoModelForCausalLM, AutoConfig
|
12 |
+
from models.basic_modules.generation import generate
|
13 |
+
|
14 |
+
|
15 |
+
"""
|
16 |
+
Actor model.
|
17 |
+
"""
|
18 |
+
class Actor(nn.Module):
|
19 |
+
"""
|
20 |
+
Actor model base class.
|
21 |
+
|
22 |
+
Args:
|
23 |
+
model (nn.Module): Actor Model.
|
24 |
+
"""
|
25 |
+
|
26 |
+
def __init__(self, model: nn.Module) -> None:
|
27 |
+
self.model = model
|
28 |
+
|
29 |
+
def log_probs_from_logits(logits: torch.Tensor, labels: torch.Tensor) -> torch.Tensor:
|
30 |
+
log_probs = F.log_softmax(logits, dim=-1)
|
31 |
+
log_probs_labels = log_probs.gather(dim=-1, index=labels.unsqueeze(-1))
|
32 |
+
return log_probs_labels.squeeze(-1)
|
33 |
+
|
34 |
+
"""
|
35 |
+
For generative model, needs generate function.
|
36 |
+
"""
|
37 |
+
@torch.no_grad()
|
38 |
+
def generate(
|
39 |
+
self,
|
40 |
+
input_ids: torch.Tensor,
|
41 |
+
return_action_mask: bool = True,
|
42 |
+
**kwargs
|
43 |
+
) -> Union[Tuple[torch.LongTensor, torch.LongTensor], Tuple[torch.LongTensor, torch.LongTensor, torch.BoolTensor]]:
|
44 |
+
sequences = generate(self.model, input_ids, **kwargs)
|
45 |
+
attention_mask = None
|
46 |
+
pad_token_id = kwargs.get('pad_token_id', None)
|
47 |
+
if pad_token_id is not None:
|
48 |
+
attention_mask = sequences.not_equal(pad_token_id).to(dtype=torch.long, device=sequences.device)
|
49 |
+
if not return_action_mask:
|
50 |
+
return sequences, attention_mask, None
|
51 |
+
input_len = input_ids.size(1)
|
52 |
+
eos_token_id = kwargs.get('eos_token_id', None)
|
53 |
+
if eos_token_id is None:
|
54 |
+
action_mask = torch.ones_like(sequences, dtype=torch.bool)
|
55 |
+
else:
|
56 |
+
# left padding may be applied, only mask action
|
57 |
+
action_mask = (sequences[:, input_len:] == eos_token_id).cumsum(dim=-1) == 0
|
58 |
+
action_mask = F.pad(action_mask, (1 + input_len, -1), value=True) # include eos token and input
|
59 |
+
action_mask[:, :input_len] = False
|
60 |
+
action_mask = action_mask[:, 1:]
|
61 |
+
return sequences, attention_mask, action_mask[:, -(sequences.size(1) - input_len):]
|
62 |
+
|
63 |
+
def forward(self,
|
64 |
+
sequences: torch.LongTensor,
|
65 |
+
num_actions: int,
|
66 |
+
attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
67 |
+
"""Returns action log probs
|
68 |
+
"""
|
69 |
+
output = self.model(sequences, attention_mask=attention_mask)
|
70 |
+
logits = output['logits']
|
71 |
+
log_probs = self.log_probs_from_logits(logits[:, :-1, :], sequences[:, 1:])
|
72 |
+
return log_probs[:, -num_actions:]
|
73 |
+
|
74 |
+
def get_base_model(self):
|
75 |
+
return self.model
|
76 |
+
|
77 |
+
|
78 |
+
"""
|
79 |
+
Causal LM as a actor, e.g., GPT-2, OPT, BLOOM, etc.
|
80 |
+
"""
|
81 |
+
class CausalActor(Actor):
|
82 |
+
"""
|
83 |
+
Causal LM Actor model.
|
84 |
+
|
85 |
+
Args:
|
86 |
+
pretrained (str): Pretrained model name or path.
|
87 |
+
config (AutoConfig): Model config.
|
88 |
+
checkpoint (bool): Enable gradient checkpointing.
|
89 |
+
"""
|
90 |
+
|
91 |
+
def __init__(self,
|
92 |
+
pretrained: str = None,
|
93 |
+
config: Optional[AutoConfig] = None,
|
94 |
+
checkpoint: bool = False) -> None:
|
95 |
+
if pretrained is not None:
|
96 |
+
model = AutoModelForCausalLM.from_pretrained(pretrained)
|
97 |
+
elif config is not None:
|
98 |
+
model = AutoModelForCausalLM(config)
|
99 |
+
else:
|
100 |
+
model = AutoModelForCausalLM(AutoConfig())
|
101 |
+
if checkpoint:
|
102 |
+
model.gradient_checkpointing_enable()
|
103 |
+
super().__init__(model)
|
models/reinforcement_learning/critic.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# @Time : 2023/5/6 4:12 p.m.
|
3 |
+
# @Author : JianingWang
|
4 |
+
# @File : critic.py
|
5 |
+
|
6 |
+
from typing import Optional, Tuple, Union
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
from transformers import AutoModel, AutoConfig
|
12 |
+
from models.basic_modules.generation import generate
|
13 |
+
|
14 |
+
|
15 |
+
def masked_mean(tensor: torch.Tensor, mask: torch.Tensor, dim: int = 1) -> torch.Tensor:
|
16 |
+
tensor = tensor * mask
|
17 |
+
tensor = tensor.sum(dim=dim)
|
18 |
+
mask_sum = mask.sum(dim=dim)
|
19 |
+
mean = tensor / (mask_sum + 1e-8)
|
20 |
+
return mean
|
21 |
+
|
22 |
+
|
23 |
+
"""
|
24 |
+
Critic model.
|
25 |
+
"""
|
26 |
+
class Critic(nn.Module):
|
27 |
+
"""
|
28 |
+
Critic model base class.
|
29 |
+
|
30 |
+
Args:
|
31 |
+
model (nn.Module): Critic model.
|
32 |
+
value_head (nn.Module): Value head to get value.
|
33 |
+
"""
|
34 |
+
|
35 |
+
def __init__(
|
36 |
+
self,
|
37 |
+
model: nn.Module,
|
38 |
+
value_head: nn.Module,
|
39 |
+
use_action_mask: bool = False,
|
40 |
+
) -> None:
|
41 |
+
|
42 |
+
self.model = model
|
43 |
+
self.value_head = value_head # critic layer for predict value function
|
44 |
+
self.use_action_mask = use_action_mask
|
45 |
+
|
46 |
+
def forward(self,
|
47 |
+
sequences: torch.LongTensor,
|
48 |
+
action_mask: Optional[torch.Tensor] = None,
|
49 |
+
attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
50 |
+
outputs = self.model(sequences, attention_mask=attention_mask)
|
51 |
+
last_hidden_states = outputs['last_hidden_state']
|
52 |
+
|
53 |
+
values = self.value_head(last_hidden_states).squeeze(-1)
|
54 |
+
|
55 |
+
if action_mask is not None and self.use_action_mask:
|
56 |
+
num_actions = action_mask.size(1)
|
57 |
+
prompt_mask = attention_mask[:, :-num_actions]
|
58 |
+
values = values[:, :-num_actions]
|
59 |
+
value = masked_mean(values, prompt_mask, dim=1)
|
60 |
+
return value
|
61 |
+
|
62 |
+
values = values[:, :-1]
|
63 |
+
value = values.mean(dim=1)
|
64 |
+
return value
|
65 |
+
|
66 |
+
|
67 |
+
"""
|
68 |
+
Auto Model for Critic
|
69 |
+
"""
|
70 |
+
class AutoModelCritic(Critic):
|
71 |
+
"""
|
72 |
+
AutoModel Critic model.
|
73 |
+
|
74 |
+
Args:
|
75 |
+
pretrained (str): Pretrained model name or path.
|
76 |
+
config (AutoConfig): Model config.
|
77 |
+
checkpoint (bool): Enable gradient checkpointing.
|
78 |
+
"""
|
79 |
+
|
80 |
+
def __init__(self,
|
81 |
+
pretrained: Optional[str] = None,
|
82 |
+
config: Optional[AutoConfig] = None,
|
83 |
+
checkpoint: bool = False,
|
84 |
+
lora_rank: int = 0,
|
85 |
+
lora_train_bias: str = 'none',
|
86 |
+
**kwargs) -> None:
|
87 |
+
if pretrained is not None:
|
88 |
+
model = AutoModel.from_pretrained(pretrained)
|
89 |
+
elif config is not None:
|
90 |
+
model = AutoModel(config)
|
91 |
+
else:
|
92 |
+
model = AutoModel(AutoConfig())
|
93 |
+
if checkpoint:
|
94 |
+
model.gradient_checkpointing_enable()
|
95 |
+
value_head = nn.Linear(model.config.word_embed_proj_dim, 1)
|
96 |
+
super().__init__(model, value_head, **kwargs)
|
models/reinforcement_learning/reward_model.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# @Time : 2023/5/6 4:29 p.m.
|
3 |
+
# @Author : JianingWang
|
4 |
+
# @File : reward_model.py
|
5 |
+
|
6 |
+
from typing import Optional, Tuple
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
from transformers import AutoModel, AutoConfig
|
11 |
+
from loss.rl_loss import LogSigLoss, LogExpLoss
|
12 |
+
from transformers.models.roberta.modeling_roberta import RobertaPreTrainedModel, RobertaModel
|
13 |
+
from transformers.models.gpt2.modeling_gpt2 import GPT2PreTrainedModel, GPT2Model
|
14 |
+
|
15 |
+
"""
|
16 |
+
RoERTa for Reward Model
|
17 |
+
"""
|
18 |
+
class RobertaForReward(RobertaPreTrainedModel):
|
19 |
+
"""
|
20 |
+
Reward model base class.
|
21 |
+
|
22 |
+
Args:
|
23 |
+
model (nn.Module): Reward model.
|
24 |
+
value_head (nn.Module): Value head to get reward score.
|
25 |
+
"""
|
26 |
+
|
27 |
+
def __init__(self, config) -> None:
|
28 |
+
super().__init__(config)
|
29 |
+
self.config = config
|
30 |
+
self.roberta = RobertaModel(config)
|
31 |
+
self.value_head = nn.Linear(self.config.n_embd, 1)
|
32 |
+
self.init_weights()
|
33 |
+
|
34 |
+
def forward(
|
35 |
+
self,
|
36 |
+
chosen_sequences: torch.LongTensor,
|
37 |
+
chosen_attention_mask: Optional[torch.Tensor],
|
38 |
+
rejected_sequences: Optional[torch.LongTensor] = None,
|
39 |
+
rejected_attention_mask: Optional[torch.Tensor] = None,
|
40 |
+
) -> torch.Tensor:
|
41 |
+
# obtain reward value of chosen sequence
|
42 |
+
chosen_outputs = self.roberta(chosen_sequences, attention_mask=chosen_attention_mask)
|
43 |
+
chosen_last_hidden_states = chosen_outputs['last_hidden_state']
|
44 |
+
chosen_values = self.value_head(chosen_last_hidden_states)[:, :-1]
|
45 |
+
chosen_values = chosen_values.mean(dim=1).squeeze(1) # ensure shape is (B)
|
46 |
+
|
47 |
+
return_dict = {
|
48 |
+
"chosen_values": chosen_values,
|
49 |
+
}
|
50 |
+
# if has rejected, obtain reward of rejected sequence, and calculate the loss
|
51 |
+
if rejected_sequences is not None:
|
52 |
+
rejected_outputs = self.roberta(rejected_sequences, attention_mask=rejected_attention_mask)
|
53 |
+
rejected_last_hidden_states = rejected_outputs['last_hidden_state']
|
54 |
+
rejected_values = self.value_head(rejected_last_hidden_states)[:, :-1]
|
55 |
+
rejected_values = rejected_values.mean(dim=1).squeeze(1) # ensure shape is (B)
|
56 |
+
return_dict["rejected_values"] = rejected_values
|
57 |
+
|
58 |
+
loss_fn = LogSigLoss()
|
59 |
+
loss = loss_fn(chosen_values, rejected_values)
|
60 |
+
|
61 |
+
return_dict["loss"] = loss
|
62 |
+
|
63 |
+
return return_dict
|
64 |
+
|
65 |
+
|
66 |
+
"""
|
67 |
+
GPT2 for Reward Model
|
68 |
+
"""
|
69 |
+
class GPT2ForReward(GPT2PreTrainedModel):
|
70 |
+
_keys_to_ignore_on_load_missing = [r"attn.masked_bias", r"attn.bias", r"lm_head.weight"]
|
71 |
+
"""
|
72 |
+
Reward model base class.
|
73 |
+
|
74 |
+
Args:
|
75 |
+
model (nn.Module): Reward model.
|
76 |
+
value_head (nn.Module): Value head to get reward score.
|
77 |
+
"""
|
78 |
+
|
79 |
+
def __init__(self, config) -> None:
|
80 |
+
super().__init__(config)
|
81 |
+
self.config = config
|
82 |
+
self.transformer = GPT2Model(config)
|
83 |
+
self.value_head = nn.Linear(self.config.n_embd, 1)
|
84 |
+
|
85 |
+
# Model parallel
|
86 |
+
self.model_parallel = False
|
87 |
+
self.device_map = None
|
88 |
+
|
89 |
+
self.post_init()
|
90 |
+
|
91 |
+
def forward(
|
92 |
+
self,
|
93 |
+
chosen_sequences: torch.LongTensor,
|
94 |
+
chosen_attention_mask: Optional[torch.Tensor],
|
95 |
+
rejected_sequences: Optional[torch.LongTensor] = None,
|
96 |
+
rejected_attention_mask: Optional[torch.Tensor] = None,
|
97 |
+
) -> torch.Tensor:
|
98 |
+
# obtain reward value of chosen sequence
|
99 |
+
chosen_outputs = self.transformer(chosen_sequences, attention_mask=chosen_attention_mask)
|
100 |
+
chosen_last_hidden_states = chosen_outputs['last_hidden_state']
|
101 |
+
chosen_values = self.value_head(chosen_last_hidden_states)[:, :-1]
|
102 |
+
chosen_values = chosen_values.mean(dim=1).squeeze(1) # ensure shape is (B)
|
103 |
+
|
104 |
+
return_dict = {
|
105 |
+
"chosen_values": chosen_values,
|
106 |
+
}
|
107 |
+
# if has rejected, obtain reward of rejected sequence, and calculate the loss
|
108 |
+
if rejected_sequences is not None:
|
109 |
+
rejected_outputs = self.transformer(rejected_sequences, attention_mask=rejected_attention_mask)
|
110 |
+
rejected_last_hidden_states = rejected_outputs['last_hidden_state']
|
111 |
+
rejected_values = self.value_head(rejected_last_hidden_states)[:, :-1]
|
112 |
+
rejected_values = rejected_values.mean(dim=1).squeeze(1) # ensure shape is (B)
|
113 |
+
return_dict["rejected_values"] = rejected_values
|
114 |
+
loss_fn = LogSigLoss()
|
115 |
+
loss = loss_fn(chosen_values, rejected_values)
|
116 |
+
|
117 |
+
return_dict["loss"] = loss
|
118 |
+
|
119 |
+
return return_dict
|
120 |
+
|
121 |
+
@staticmethod
|
122 |
+
def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
|
123 |
+
"""
|
124 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
125 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
126 |
+
beam_idx at every generation step.
|
127 |
+
"""
|
128 |
+
return tuple(
|
129 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
130 |
+
for layer_past in past
|
131 |
+
)
|