Spaces:
Running
Running
from transformers import AutoModelForCausalLM | |
from transformers import GPT2Tokenizer | |
from transformers.models.gpt2.modeling_gpt2 import GPT2Model, GPT2LMHeadModel | |
if __name__ == "__main__": | |
gpt2_tokenizer: GPT2Tokenizer = GPT2Tokenizer.from_pretrained("/Users/wangjianing/Desktop/开源代码与数据模型/模型/gpt2") | |
# gpt2_model = GPT2LMHeadModel.from_pretrained("/Users/wangjianing/Desktop/开源代码与数据模型/模型/gpt2") | |
# # input_text = "The capital city of China is Beijing. The capital city of Japan is Tokyo. The capital city of America" | |
# input_text = "What are follows emotions? \n\n The book is very nice.\n great. \n\n I never eat chocolate!\n bad. \n\n This film is wonderful.\n Great" | |
# # input_text = "Mr. Chen was born in Shanghai. Obama was born in US. Trump was born in" | |
# inputs = gpt2_tokenizer(input_text, return_tensors="pt") | |
# print(inputs) | |
# output = gpt2_model(**inputs) | |
# # print(output["last_hidden_state"]) | |
# # print(output["last_hidden_state"].size()) | |
# print(output["logits"]) | |
# print(output["logits"].size()) | |
# gen_output = gpt2_model.generate(**inputs, max_length=60) | |
# # gen_result = gpt2_tokenizer.convert_ids_to_tokens(gen_output[0]) | |
# gen_result = gpt2_tokenizer.decode(gen_output[0]) | |
# print(gen_result) | |
gpt2_tokenizer( | |
[["What are follows emotions?", "What are follows emotions?"], ["What are follows emotions?"]], | |
truncation=True, | |
max_length=30, | |
padding="max_length", | |
return_offsets_mapping=True | |
) | |