File size: 10,059 Bytes
eee5b94
71e3d07
 
 
eee5b94
 
 
71e3d07
f9951fb
 
 
 
 
 
 
 
 
 
 
 
5bc9aa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e47ffb8
5bc9aa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
537576e
6ca9070
71e3d07
 
eee5b94
 
71e3d07
537576e
6ca9070
537576e
6ca9070
537576e
6ca9070
 
79e69f0
 
 
 
 
 
 
 
537576e
eee5b94
 
 
79e69f0
 
 
 
 
 
 
 
71e3d07
eee5b94
71e3d07
 
 
 
 
 
 
eee5b94
71e3d07
 
eee5b94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
471c532
eee5b94
 
 
71e3d07
 
eee5b94
 
 
71e3d07
 
 
eee5b94
71e3d07
 
eee5b94
 
 
 
 
 
 
 
 
79e69f0
 
 
 
 
 
eee5b94
79e69f0
eee5b94
 
 
537576e
 
 
 
eee5b94
 
 
537576e
 
eee5b94
 
537576e
eee5b94
 
 
 
 
 
71e3d07
cf07967
 
 
95f58c1
 
cf07967
 
 
 
 
 
92f4fa6
 
ebd4967
92f4fa6
ebd4967
 
 
 
6c14e53
92f4fa6
eee5b94
5bc9aa3
e47ffb8
 
 
eee5b94
5bc9aa3
56337d7
471c532
5bc9aa3
 
db09be3
56337d7
 
eee5b94
5bc9aa3
 
471c532
eee5b94
5bc9aa3
eee5b94
5bc9aa3
 
eee5b94
471c532
 
 
 
 
 
eee5b94
 
 
471c532
eee5b94
 
 
 
 
0f1bc4e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import os
import gradio as gr
import aiohttp
import asyncio
import json
from datasets import Dataset, DatasetDict, load_dataset, load_from_disk
from huggingface_hub import HfApi, HfFolder

import subprocess

def upgrade_pip():
    try:
        subprocess.check_call([os.sys.executable, "-m", "pip", "install", "--upgrade", "pip"])
        print("pip 升級成功")
    except subprocess.CalledProcessError:
        print("pip 升級失敗")

# 呼叫升級函數
upgrade_pip()

# 定義 CSS 樣式
custom_css = """
#title {
    font-size: 2em;
    font-weight: bold;
    text-align: center;
    margin-bottom: 20px;
}
#subtitle {
    font-size: 1.5em;
    text-align: center;
    margin-bottom: 20px;
}
#links {
    text-align: center;
    margin-bottom: 30px;
}
#user_input, #improvement_input, #feedback_output {
    width: 100%;
    margin-bottom: 10px;
}
#chatbot {
    height: 300px;
    overflow-y: auto;
    background: #f7f7f7;
    border-radius: 10px;
    padding: 20px;
    border: 1px solid #ccc;
}
#feedback_display {
    background: #f7f7f7;
    border-radius: 10px;
    padding: 20px;
    border: 1px solid #ccc;
}
.gr-button {
    width: 100%;
    margin-bottom: 10px;
    background-color: #4CAF50;
    color: white;
    border: none;
    padding: 10px 20px;
    text-align: center;
    text-decoration: none;
    display: inline-block;
    font-size: 16px;
    cursor: pointer;
    border-radius: 5px;
}
.gr-button:hover {
    background-color: #45a049;
}
"""

# 從環境變量中獲取 Hugging Face API 令牌和其他配置
HF_API_TOKEN = os.environ.get("HF_API_TOKEN")
LLM_API = os.environ.get("LLM_API")
LLM_URL = os.environ.get("LLM_URL")
USER_ID = "HuggingFace Space"
DATASET_NAME = os.environ.get("DATASET_NAME")

# 確保令牌不為空
if HF_API_TOKEN is None:
    raise ValueError("HF_API_TOKEN 環境變量未設置。請在 Hugging Face Space 的設置中添加該環境變量。")

# 設置 Hugging Face API 令牌
HfFolder.save_token(HF_API_TOKEN)

# 定義數據集特徵
features = {
    "user_input": "string",
    "response": "string",
    "feedback_type": "string",
    "improvement": "string"
}

# 加載或創建數據集
try:
    dataset = load_dataset(DATASET_NAME)
except:
    dataset = DatasetDict({
        "feedback": Dataset.from_dict({
            "user_input": [],
            "response": [],
            "feedback_type": [],
            "improvement": []
        })
    })

async def send_chat_message(user_input):
    payload = {
        "inputs": {},
        "query": user_input,
        "response_mode": "streaming",
        "conversation_id": "",
        "user": USER_ID,
    }
    print("Sending chat message payload:", payload)

    async with aiohttp.ClientSession() as session:
        try:
            async with session.post(
                url=f"{LLM_URL}/chat-messages",
                headers={"Authorization": f"Bearer {LLM_API}"},
                json=payload,
                timeout=aiohttp.ClientTimeout(total=60)
            ) as response:
                if response.status != 200:
                    print(f"Error: {response.status}")
                    return f"Error: {response.status}"

                full_response = []
                async for line in response.content:
                    line = line.decode('utf-8').strip()
                    if not line:
                        continue
                    if "data: " not in line:
                        continue
                    try:
                        data = json.loads(line.split("data: ")[1])
                        if "answer" in data:
                            full_response.append(data["answer"])
                    except (IndexError, json.JSONDecodeError) as e:
                        print(f"Error parsing line: {line}, error: {e}")
                        continue

                if full_response:
                    return ''.join(full_response).strip()
                else:
                    return "Error: No response found in the response"
        except Exception as e:
            print(f"Exception: {e}")
            return f"Exception: {e}"

async def handle_input(user_input):
    print(f"Handling input: {user_input}")
    chat_response = await send_chat_message(user_input)
    print("Chat response:", chat_response)
    return chat_response

def run_sync(user_input):
    print(f"Running sync with input: {user_input}")
    return asyncio.run(handle_input(user_input))

def save_feedback(user_input, response, feedback_type, improvement):
    feedback = {
        "user_input": user_input,
        "response": response,
        "feedback_type": feedback_type,
        "improvement": improvement
    }
    print(f"Saving feedback: {feedback}")
    # Append to the dataset
    new_data = {
        "user_input": [user_input],
        "response": [response],
        "feedback_type": [feedback_type],
        "improvement": [improvement]
    }
    global dataset
    dataset["feedback"] = dataset["feedback"].add_item(new_data)
    dataset.push_to_hub(DATASET_NAME)

def handle_feedback(response, feedback_type, improvement):
    # 獲取最新的用戶輸入(假設用戶輸入保存在全局變量中)
    global last_user_input
    save_feedback(last_user_input, response, feedback_type, improvement)
    return "感謝您的反饋!"

def handle_user_input(user_input):
    print(f"User input: {user_input}")
    global last_user_input
    last_user_input = user_input  # 保存最新的用戶輸入
    return run_sync(user_input)

# 讀取並顯示反饋內容的函數
def show_feedback():
    try:
        feedbacks = dataset["feedback"].to_pandas().to_dict(orient="records")
        return feedbacks
    except Exception as e:
        return f"Error: {e}"

TITLE = """<h1>Large Language Model (LLM) Playground 💬 <a href='https://huggingface.co/spaces/DeepLearning101/High-Entropy-Alloys-FAQ/blob/main/reference.txt' target='_blank'>High-Entropy-Alloys-FAQ</a></h1>"""
SUBTITLE = """<h2><a href='https://www.twman.org' target='_blank'>TonTon Huang Ph.D. @ 2024/04 </a><br></h2>"""
LINKS = """
<a href='https://github.com/Deep-Learning-101' target='_blank'>Deep Learning 101 Github</a> | <a href='http://deeplearning101.twman.org' target='_blank'>Deep Learning 101</a> | <a href='https://www.facebook.com/groups/525579498272187/' target='_blank'>台灣人工智慧社團 FB</a> | <a href='https://www.youtube.com/c/DeepLearning101' target='_blank'>YouTube</a><br>
<a href='https://reurl.cc/g6GlZX' target='_blank'>手把手帶你一起踩AI坑</a> | <a href='https://blog.twman.org/2024/11/diffusion.html' target='_blank'>ComfyUI + Stable Diffuision</a><br>
<a href='https://blog.twman.org/2024/08/LLM.html' target='_blank'>白話文手把手帶你科普 GenAI</a> | <a href='https://blog.twman.org/2024/09/LLM.html' target='_blank'>大型語言模型直接就打完收工?</a><br>
<a href='https://blog.twman.org/2023/04/GPT.html' target='_blank'>什麼是大語言模型,它是什麼?想要嗎?</a> | <a href='https://blog.twman.org/2024/07/RAG.html' target='_blank'>那些檢索增強生成要踩的坑 </a><br>
<a href='https://blog.twman.org/2021/04/ASR.html' target='_blank'>那些語音處理 (Speech Processing) 踩的坑</a> | <a href='https://blog.twman.org/2021/04/NLP.html' target='_blank'>那些自然語言處理 (Natural Language Processing, NLP) 踩的坑</a><br>
<a href='https://blog.twman.org/2024/02/asr-tts.html' target='_blank'>那些ASR和TTS可能會踩的坑</a> | <a href='https://blog.twman.org/2024/02/LLM.html' target='_blank'>那些大模型開發會踩的坑</a><br>
<a href='https://blog.twman.org/2023/07/wsl.html' target='_blank'>用PPOCRLabel來幫PaddleOCR做OCR的微調和標註</a> | <a href='https://blog.twman.org/2023/07/HugIE.html' target='_blank'>基於機器閱讀理解和指令微調的統一信息抽取框架之診斷書醫囑資訊擷取分析</a><br>
"""
# 添加示例
examples = [
    ["請問high entropy nitride coatings的形成,主要可透過那些元素來讓這個材料形成熱穩定?"],
    ["AlCoCrFeNi HEA coating 可用怎樣的實驗方法做到 ?"],
    ["高熵合金與傳統合金在成分和特性的差異?"],
    ["高熵塗層材料的種類有哪些?"],
    ["如何提高LWHEAs延展性?"],
    ["如何優化HEA的性能?"],
    ["查詢 https://doi.org/10.3390/ma17020453"]
]

with gr.Blocks(css=custom_css) as iface:
    gr.HTML(TITLE)
    gr.HTML(SUBTITLE)
    gr.HTML(LINKS)
    with gr.Row():
        chatbot = gr.Chatbot(elem_id="chatbot")
        
    with gr.Row():
        user_input = gr.Textbox(label='輸入您的問題', placeholder="在此輸入問題...", elem_id="user_input")
        submit_button = gr.Button("問題輸入好,請點我送出", elem_id="submit_button")

    gr.Examples(examples=examples, inputs=user_input)
        
    with gr.Row():
        dislike_button = gr.Button("👎 覺得答案待改善,請輸入改進建議,再按我送出保存", elem_id="dislike_button")
        improvement_input = gr.Textbox(label='請輸入改進建議', placeholder='請輸入如何改進模型回應的建議', elem_id="improvement_input")

    with gr.Row():
        feedback_output = gr.Textbox(label='反饋結果執行狀態', interactive=False, elem_id="feedback_output")
    with gr.Row():
        show_feedback_button = gr.Button("查看目前所有反饋記錄", elem_id="show_feedback_button")
        feedback_display = gr.JSON(label='所有反饋記錄', elem_id="feedback_display")

    def chat(user_input, history):
        response = handle_user_input(user_input)
        history.append((user_input, response))
        return history, history

    submit_button.click(fn=chat, inputs=[user_input, chatbot], outputs=[chatbot, chatbot])

    dislike_button.click(
        fn=lambda response, improvement: handle_feedback(response, "dislike", improvement),
        inputs=[chatbot, improvement_input],
        outputs=feedback_output
    )

    show_feedback_button.click(fn=show_feedback, outputs=feedback_display)

iface.launch()