File size: 5,600 Bytes
821e9b3
 
3f8b483
5521e44
821e9b3
9ed8b92
5521e44
9ed8b92
 
 
 
 
5521e44
821e9b3
 
 
3f8b483
821e9b3
3f8b483
 
 
 
821e9b3
3f8b483
 
 
 
 
 
 
 
 
 
 
 
 
 
5521e44
821e9b3
 
5521e44
821e9b3
 
 
 
 
 
 
5521e44
9ed8b92
 
 
 
821e9b3
9ed8b92
 
 
 
821e9b3
9ed8b92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
821e9b3
 
 
5521e44
821e9b3
 
9ed8b92
821e9b3
 
 
 
9ed8b92
 
821e9b3
 
 
 
 
 
9ed8b92
 
821e9b3
 
9ed8b92
3f8b483
821e9b3
 
 
 
 
9ed8b92
821e9b3
 
 
 
 
 
9ed8b92
821e9b3
9ed8b92
 
 
 
 
 
 
 
5521e44
821e9b3
 
9ed8b92
821e9b3
 
9ed8b92
 
 
 
 
 
821e9b3
 
 
 
 
9ed8b92
821e9b3
9ed8b92
821e9b3
9ed8b92
 
 
821e9b3
9ed8b92
821e9b3
9ed8b92
821e9b3
5521e44
 
821e9b3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
import re
import json

import gradio as gr
from openai import OpenAI

# Initialize the OpenAI client with the API key from environment variables.
client = OpenAI(api_key=os.environ["OPENAI_API_KEY"])

# In-memory storage to track submitted emails (not persistent; resets on app restart).
submitted_emails = set()

def get_evaluation_questions():
    """
    Loads evaluation questions and expected answers from environment variables.
    
    Expected environment variable names are:
      - TEST_QUESTION_1: a JSON array of user query strings.
      - TEST_EXPECTED: a JSON array of JSON-like strings representing the expected outputs.
    
    Both lists must be of equal length.
    """
    questions_str = os.environ.get("TEST_QUESTION_1")
    expected_str = os.environ.get("TEST_EXPECTED")
    if not questions_str or not expected_str:
        return []
    try:
        questions_list = json.loads(questions_str)
        expected_list = json.loads(expected_str)
    except Exception as e:
        print(f"Error parsing evaluation questions: {str(e)}")
        return []
    if len(questions_list) != len(expected_list):
        print("Mismatch in length: questions list and expected answers list must have the same length.")
        return []
    return [{"question": q, "expected": e} for q, e in zip(questions_list, expected_list)]

# Load the evaluation questions once at startup.
EVALUATION_QUESTIONS = get_evaluation_questions()

def sanitize_input(text):
    """
    Sanitizes input to prevent harmful content and limits its length.
    """
    # Allow alphanumerics and some punctuation, then truncate to 500 characters.
    clean_text = re.sub(r"[^a-zA-Z0-9\s.,!?@:\-]", "", text)
    return clean_text.strip()[:500]

def validate_email(email):
    """
    Validates that the provided email is in a valid format.
    Returns True if valid, False otherwise.
    """
    email_regex = r"^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$"
    return re.match(email_regex, email) is not None

def submit_prompt(email, name, system_prompt):
    """
    Handles user submission:
      - Validates email format.
      - Checks if the email has already been used for submission.
      - Evaluates the system prompt against predefined test questions.
      - Prevents multiple submissions from the same email.
    Returns the evaluation results or an error message if the submission is invalid.
    """
    # Validate email format.
    if not validate_email(email):
        return "Invalid email address. Please enter a valid email."

    # Check if this email has already been used for submission.
    if email in submitted_emails:
        return f"Submission already received for {email}. You can only submit once."

    # Sanitize inputs.
    email = sanitize_input(email)
    name = sanitize_input(name)
    system_prompt = sanitize_input(system_prompt)

    score = 0
    responses = []

    for item in EVALUATION_QUESTIONS:
        question = item["question"]
        expected = item["expected"]
        try:
            # Use the new client-based API for chat completions.
            response = client.chat.completions.create(
                model="gpt-4o-mini",  # Ensure this identifier matches the deployed model.
                messages=[
                    {"role": "system", "content": system_prompt},
                    {"role": "user", "content": question}
                ]
            )
            # Extract the answer from the response object.
            answer = response.choices[0].message.content.strip()
        except Exception as e:
            answer = f"Error during OpenAI API call: {str(e)}"

        # Simple evaluation: check if the expected output is a substring of the answer (case-insensitive).
        if expected.lower() in answer.lower():
            score += 1
            verdict = "Correct"
        else:
            verdict = "Incorrect"

        responses.append(
            f"Question: {question}\n"
            f"Answer: {answer}\n"
            f"Expected: {expected}\n"
            f"Result: {verdict}\n"
        )

    result_details = "\n".join(responses)

    # Record this email as having submitted their prompt.
    submitted_emails.add(email)

    return (
        f"Thank you for your submission, {name}!\n\n"
        f"Your evaluation score is {score} out of {len(EVALUATION_QUESTIONS)}.\n\nDetails:\n{result_details}"
    )

def build_interface():
    """
    Constructs the Gradio interface with a submission button and single-submission mechanism.
    """
    with gr.Blocks() as demo:
        gr.Markdown("# GPT-4o Mini Prompt Submission")
        gr.Markdown(
            "Please enter your details and submit your system prompt below. "
            "You can only submit once."
        )

        email_input = gr.Textbox(label="Email", placeholder="your.email@example.com")
        name_input = gr.Textbox(label="Name", placeholder="Your name")
        system_prompt_input = gr.Textbox(
            label="System Prompt",
            placeholder="Enter your system prompt here...",
            lines=6,
        )
        submit_button = gr.Button("Submit")
        output_text = gr.Textbox(label="Results", lines=15)

        submit_button.click(
            fn=submit_prompt,
            inputs=[email_input, name_input, system_prompt_input],
            outputs=output_text,
        )
    
    return demo

if __name__ == "__main__":
    interface = build_interface()
    # Launch the app on 0.0.0.0 so it is accessible externally (e.g., in a container).
    interface.launch(server_name="0.0.0.0", server_port=7860)