File size: 14,654 Bytes
b49d235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
from itertools import repeat
import collections.abc
import logging
import math
import numpy as np

import torch
from torch import nn as nn
from torchvision.ops.misc import FrozenBatchNorm2d
import torch.nn.functional as F

# open CLIP
def resize_clip_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
    # Rescale the grid of position embeddings when loading from state_dict
    old_pos_embed = state_dict.get('visual.positional_embedding', None)
    if old_pos_embed is None or not hasattr(model.visual, 'grid_size'):
        return
    grid_size = to_2tuple(model.visual.grid_size)
    extra_tokens = 1  # FIXME detect different token configs (ie no class token, or more)
    new_seq_len = grid_size[0] * grid_size[1] + extra_tokens
    if new_seq_len == old_pos_embed.shape[0]:
        return

    if extra_tokens:
        pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:]
    else:
        pos_emb_tok, pos_emb_img = None, old_pos_embed
    old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img))))

    logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size)
    pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2)
    pos_emb_img = F.interpolate(
        pos_emb_img,
        size=grid_size,
        mode=interpolation,
        align_corners=True,
    )
    pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0]
    if pos_emb_tok is not None:
        new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0)
    else:
        new_pos_embed = pos_emb_img
    state_dict['visual.positional_embedding'] = new_pos_embed


def resize_visual_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
    # Rescale the grid of position embeddings when loading from state_dict
    old_pos_embed = state_dict.get('positional_embedding', None)
    if old_pos_embed is None or not hasattr(model.visual, 'grid_size'):
        return
    grid_size = to_2tuple(model.visual.grid_size)
    extra_tokens = 1  # FIXME detect different token configs (ie no class token, or more)
    new_seq_len = grid_size[0] * grid_size[1] + extra_tokens
    if new_seq_len == old_pos_embed.shape[0]:
        return

    if extra_tokens:
        pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:]
    else:
        pos_emb_tok, pos_emb_img = None, old_pos_embed
    old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img))))

    logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size)
    pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2)
    pos_emb_img = F.interpolate(
        pos_emb_img,
        size=grid_size,
        mode=interpolation,
        align_corners=True,
    )
    pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0]
    if pos_emb_tok is not None:
        new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0)
    else:
        new_pos_embed = pos_emb_img
    state_dict['positional_embedding'] = new_pos_embed

def resize_evaclip_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
    all_keys = list(state_dict.keys())
    # interpolate position embedding
    if 'visual.pos_embed' in state_dict:
        pos_embed_checkpoint = state_dict['visual.pos_embed']
        embedding_size = pos_embed_checkpoint.shape[-1]
        num_patches = model.visual.patch_embed.num_patches
        num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches
        # height (== width) for the checkpoint position embedding
        orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
        # height (== width) for the new position embedding
        new_size = int(num_patches ** 0.5)
        # class_token and dist_token are kept unchanged
        if orig_size != new_size:
            print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
            extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
            # only the position tokens are interpolated
            pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
            pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
            pos_tokens = torch.nn.functional.interpolate(
                pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
            pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
            new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
            state_dict['visual.pos_embed'] = new_pos_embed

            patch_embed_proj = state_dict['visual.patch_embed.proj.weight']
            patch_size = model.visual.patch_embed.patch_size
            state_dict['visual.patch_embed.proj.weight'] = torch.nn.functional.interpolate(
                patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False)


def resize_eva_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
    all_keys = list(state_dict.keys())
    # interpolate position embedding
    if 'pos_embed' in state_dict:
        pos_embed_checkpoint = state_dict['pos_embed']
        embedding_size = pos_embed_checkpoint.shape[-1]
        num_patches = model.visual.patch_embed.num_patches
        num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches
        # height (== width) for the checkpoint position embedding
        orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
        # height (== width) for the new position embedding
        new_size = int(num_patches ** 0.5)
        # class_token and dist_token are kept unchanged
        if orig_size != new_size:
            print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
            extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
            # only the position tokens are interpolated
            pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
            pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
            pos_tokens = torch.nn.functional.interpolate(
                pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
            pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
            new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
            state_dict['pos_embed'] = new_pos_embed

            patch_embed_proj = state_dict['patch_embed.proj.weight']
            patch_size = model.visual.patch_embed.patch_size
            state_dict['patch_embed.proj.weight'] = torch.nn.functional.interpolate(
                patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False)
                

def resize_rel_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
    all_keys = list(state_dict.keys())
    for key in all_keys:
        if "relative_position_index" in key:
            state_dict.pop(key)

        if "relative_position_bias_table" in key:
            rel_pos_bias = state_dict[key]
            src_num_pos, num_attn_heads = rel_pos_bias.size()
            dst_num_pos, _ = model.visual.state_dict()[key].size()
            dst_patch_shape = model.visual.patch_embed.patch_shape
            if dst_patch_shape[0] != dst_patch_shape[1]:
                raise NotImplementedError()
            num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * (dst_patch_shape[1] * 2 - 1)
            src_size = int((src_num_pos - num_extra_tokens) ** 0.5)
            dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5)
            if src_size != dst_size:
                print("Position interpolate for %s from %dx%d to %dx%d" % (
                    key, src_size, src_size, dst_size, dst_size))
                extra_tokens = rel_pos_bias[-num_extra_tokens:, :]
                rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :]

                def geometric_progression(a, r, n):
                    return a * (1.0 - r ** n) / (1.0 - r)

                left, right = 1.01, 1.5
                while right - left > 1e-6:
                    q = (left + right) / 2.0
                    gp = geometric_progression(1, q, src_size // 2)
                    if gp > dst_size // 2:
                        right = q
                    else:
                        left = q

                # if q > 1.090307:
                #     q = 1.090307

                dis = []
                cur = 1
                for i in range(src_size // 2):
                    dis.append(cur)
                    cur += q ** (i + 1)

                r_ids = [-_ for _ in reversed(dis)]

                x = r_ids + [0] + dis
                y = r_ids + [0] + dis

                t = dst_size // 2.0
                dx = np.arange(-t, t + 0.1, 1.0)
                dy = np.arange(-t, t + 0.1, 1.0)

                print("Original positions = %s" % str(x))
                print("Target positions = %s" % str(dx))

                all_rel_pos_bias = []

                for i in range(num_attn_heads):
                    z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy()
                    f = F.interpolate.interp2d(x, y, z, kind='cubic')
                    all_rel_pos_bias.append(
                        torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(rel_pos_bias.device))

                rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1)

                new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0)
                state_dict[key] = new_rel_pos_bias

    # interpolate position embedding
    if 'pos_embed' in state_dict:
        pos_embed_checkpoint = state_dict['pos_embed']
        embedding_size = pos_embed_checkpoint.shape[-1]
        num_patches = model.visual.patch_embed.num_patches
        num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches
        # height (== width) for the checkpoint position embedding
        orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
        # height (== width) for the new position embedding
        new_size = int(num_patches ** 0.5)
        # class_token and dist_token are kept unchanged
        if orig_size != new_size:
            print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
            extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
            # only the position tokens are interpolated
            pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
            pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
            pos_tokens = torch.nn.functional.interpolate(
                pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
            pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
            new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
            state_dict['pos_embed'] = new_pos_embed

            patch_embed_proj = state_dict['patch_embed.proj.weight']
            patch_size = model.visual.patch_embed.patch_size
            state_dict['patch_embed.proj.weight'] = torch.nn.functional.interpolate(
                patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False)


def freeze_batch_norm_2d(module, module_match={}, name=''):
    """
    Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`. If `module` is
    itself an instance of either `BatchNorm2d` or `SyncBatchNorm`, it is converted into `FrozenBatchNorm2d` and
    returned. Otherwise, the module is walked recursively and submodules are converted in place.

    Args:
        module (torch.nn.Module): Any PyTorch module.
        module_match (dict): Dictionary of full module names to freeze (all if empty)
        name (str): Full module name (prefix)

    Returns:
        torch.nn.Module: Resulting module

    Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762
    """
    res = module
    is_match = True
    if module_match:
        is_match = name in module_match
    if is_match and isinstance(module, (nn.modules.batchnorm.BatchNorm2d, nn.modules.batchnorm.SyncBatchNorm)):
        res = FrozenBatchNorm2d(module.num_features)
        res.num_features = module.num_features
        res.affine = module.affine
        if module.affine:
            res.weight.data = module.weight.data.clone().detach()
            res.bias.data = module.bias.data.clone().detach()
        res.running_mean.data = module.running_mean.data
        res.running_var.data = module.running_var.data
        res.eps = module.eps
    else:
        for child_name, child in module.named_children():
            full_child_name = '.'.join([name, child_name]) if name else child_name
            new_child = freeze_batch_norm_2d(child, module_match, full_child_name)
            if new_child is not child:
                res.add_module(child_name, new_child)
    return res


# From PyTorch internals
def _ntuple(n):
    def parse(x):
        if isinstance(x, collections.abc.Iterable):
            return x
        return tuple(repeat(x, n))
    return parse


to_1tuple = _ntuple(1)
to_2tuple = _ntuple(2)
to_3tuple = _ntuple(3)
to_4tuple = _ntuple(4)
to_ntuple = lambda n, x: _ntuple(n)(x)


def is_logging(args):
    def is_global_master(args):
        return args.rank == 0

    def is_local_master(args):
        return args.local_rank == 0

    def is_master(args, local=False):
        return is_local_master(args) if local else is_global_master(args)
    return is_master


class AllGather(torch.autograd.Function):
    """An autograd function that performs allgather on a tensor.
    Performs all_gather operation on the provided tensors.
    *** Warning ***: torch.distributed.all_gather has no gradient.
    """

    @staticmethod
    def forward(ctx, tensor, rank, world_size):
        tensors_gather = [torch.empty_like(tensor) for _ in range(world_size)]
        torch.distributed.all_gather(tensors_gather, tensor)
        ctx.rank = rank
        ctx.batch_size = tensor.shape[0]
        return torch.cat(tensors_gather, 0)

    @staticmethod
    def backward(ctx, grad_output):
        return (
            grad_output[ctx.batch_size * ctx.rank: ctx.batch_size * (ctx.rank + 1)],
            None,
            None
        )

allgather = AllGather.apply